Manufacturing Shape-Controllable Flexible PEDOT/rGO Composite Electrodes for Planar Micro-Supercapacitors
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Fabrication of PEDOT/rGO Electrodes
2.3. Electrolyte
2.4. Construction of Planar MSCs
2.5. Characterization
2.6. Electrochemical Measurements
3. Results and Discussion
3.1. Surface Morphology Analysis
3.2. Structure Analysis
3.3. Electrochemical Performance Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seo, W.; Im, S.; Lee, G. Characteristics of the Received Signal of an Ultrasonic Sensor Installed in a Chamber with Micro-Leakage. Mech. Sci. 2021, 12, 1051–1060. [Google Scholar] [CrossRef]
- Azcárate, C.; Mallor, F.; Mateo, P. Tactical and Operational Management of Wind Energy Systems with Storage Using a Probabilistic Forecast of the Energy Resource. Renew. Energy 2017, 102, 445–456. [Google Scholar] [CrossRef]
- Tasnin, W.; Saikia, L.C. Performance Comparison of Several Energy Storage Devices in Deregulated AGC of a Multi-Area System Incorporating Geothermal Power Plant. IET Renew. Power Gener. 2018, 12, 761–772. [Google Scholar] [CrossRef]
- Zhang, W.; Yin, H.; Yu, Z.; Jia, X.; Liang, J.; Li, G.; Li, Y.; Wang, K. Facile Synthesis of 4, 4′-Biphenyl Dicarboxylic Acid-Based Nickel Metal Organic Frameworks with a Tunable Pore Size towards High-Performance Supercapacitors. Nanomaterials 2022, 12, 2062. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, C.; Li, X.; Sun, L.; Wu, D.; Li, J.; Huo, P.; Wang, H. Chemical Precipitation Synthesis of Porous Ni2P2O7 Nanowires for Supercapacitor. J. Alloys Compd. 2019, 790, 36–41. [Google Scholar] [CrossRef]
- Reddy, G.R.; Kumar, N.S.; Raju, B.D.P.; Shanmugam, G.; Al-Ghurabi, E.H.; Asif, M. Enhanced Supercapacitive Performance of Higher-Ordered 3d-Hierarchical Structures of Hydrothermally Obtained ZnCo2O4 for Energy Storage Devices. Nanomaterials 2020, 10, 1206. [Google Scholar] [CrossRef]
- Chen, Y.; Yan, R.; Yu, C.; Zhao, C.; Huang, X.; Wei, L. Investigation on Characteristic Parameters Identification and Evolution of Supercapacitor Energy Storage System From Sparse and Fragmented Monitoring Data. IEEE Access 2023, 11, 56983–56993. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, X.; Yao, M.; Liu, L.; Niu, Z.; Chen, J. Activated Carbon Felts with Exfoliated Graphene Nanosheets for Flexible All-Solid-State Supercapacitors. Chin. Chem. Lett. 2019, 30, 915–918. [Google Scholar] [CrossRef]
- Wang, X.L.; Jin, E.M.; Chen, J.; Bandyopadhyay, P.; Jin, B.; Jeong, S.M. Facile in Situ Synthesis of Co(OH)2–Ni3S2 Nanowires on Ni Foam for Use in High-Energy-Density Supercapacitors. Nanomaterials 2022, 12, 34. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, C.; Cao, X.; Wang, Q.; Yang, G.; Chen, J. Porous Carbon Spheres Derived from Hemicelluloses for Supercapacitor Application. Int. J. Mol. Sci. 2022, 23, 7101. [Google Scholar] [CrossRef]
- Li, M.; Zhu, K.; Zhao, H.; Meng, Z.; Wang, C.; Chu, P.K. Construction of α-MnO2 on Carbon Fibers Modified with Carbon Nanotubes for Ultrafast Flexible Supercapacitors in Ionic Liquid Electrolytes with Wide Voltage Windows. Nanomaterials 2022, 12, 2020. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xu, L.; Zhou, W.; Jiang, F.; Liu, P.; Zhang, H.; Jiang, Q.; Xu, J. Fishnet-Like, Nitrogen-Doped Carbon Films Directly Anchored on Carbon Cloths as Binder-Free Electrodes for High-Performance Supercapacitor. Glob. Chall. 2020, 4, 1900086. [Google Scholar] [CrossRef]
- Ramkumar, R.; Dhakal, G.; Shim, J.J.; Kim, W.K. NiO/Ni Nanowafer Aerogel Electrodes for High Performance Supercapacitors. Nanomaterials 2022, 12, 3813. [Google Scholar] [CrossRef]
- Shah, S.S.; Alfasane, M.A.; Bakare, I.A.; Aziz, M.A.; Yamani, Z.H. Polyaniline and Heteroatoms–Enriched Carbon Derived from Pithophora Polymorpha Composite for High Performance Supercapacitor. J. Energy Storage 2020, 30, 101562. [Google Scholar] [CrossRef]
- Boyd, S.; Geise, N.R.; Toney, M.F.; Augustyn, V. High Power Energy Storage via Electrochemically Expanded and Hydrated Manganese-Rich Oxides. Front. Chem. 2020, 8, 715. [Google Scholar] [CrossRef]
- Dong, J.Y.; Xu, J.C.; Hui, K.N.; Yang, Y.; Su, S.C.; Li, L.; Zhang, X.T.; Ng, K.W.; Wang, S.P.; Tang, Z.K. Homogeneous Core/Shell NiMoO4@NiMoO4 and Activated Carbon for High Performance Asymmetric Supercapacitor. Nanomaterials 2019, 9, 1033. [Google Scholar] [CrossRef]
- Abbas, Q.; Mateen, A.; Khan, A.J.; Eldesoky, G.E.; Idrees, A.; Ahmad, A.; Eldin, E.T.; Das, H.T.; Sajjad, M.; Javed, M.S. Binder-Free Zinc–Iron Oxide as a High-Performance Negative Electrode Material for Pseudocapacitors. Nanomaterials 2022, 12, 3154. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Chang, X.; Mei, L.; Shu, X.; Ma, J.; Ouyang, L.; Gu, S. Solvothermal Preparation of Spherical Bi2O3nanoparticles Uniformly Distributed on Ti3C2Txfor Enhanced Capacitive Performance. Nanoscale Adv. 2021, 3, 5312–5321. [Google Scholar] [CrossRef] [PubMed]
- Mu, C.; Sun, X.; Chang, Y.; Wen, F.; Nie, A.; Wang, B.; Xiang, J.; Zhai, K.; Xue, T.; Liu, Z. High-Performance Flexible All-Solid-State Micro-Supercapacitors Based on Two-Dimensional InSe Nanosheets. J. Power Sources 2021, 482, 228987. [Google Scholar] [CrossRef]
- Raman, V.; Rhee, D.; Selvaraj, A.R.; Kim, J.; Prabakar, K.; Kang, J.; Kim, H.K. High-Performance Flexible Transparent Micro-Supercapacitors from Nanocomposite Electrodes Encapsulated with Solution Processed MoS2 Nanosheets. Sci. Technol. Adv. Mater. 2021, 22, 875–884. [Google Scholar] [CrossRef]
- Tang, K.; Ma, H.; Tian, Y.; Liu, Z.; Jin, H.; Hou, S.; Zhou, K.; Tian, X. 3D Printed Hybrid-Dimensional Electrodes for Flexible Micro-Supercapacitors with Superior Electrochemical Behaviours. Virtual Phys. Prototyp. 2020, 15, 511–519. [Google Scholar] [CrossRef]
- Wang, M.; Liu, C.; Albolkany, M.K.; Zhao, M.; Zhu, C.; Liu, B. Gram-Scale Synthesis of Porous Graphene via Printing Paper Pyrolysis as Supercapacitor Electrodes. Energy Technol. 2021, 9, 2001025. [Google Scholar] [CrossRef]
- Diao, J.; Yuan, J.; Ding, A.; Zheng, J.; Lu, Z. Flexible Supercapacitor Based on Inkjet-Printed Graphene@Polyaniline Nanocomposites with Ultrahigh Capacitance. Macromol. Mater. Eng. 2018, 303, 1800092. [Google Scholar] [CrossRef]
- Scardaci, V.; Compagnini, G. Raman Spectroscopy Investigation of Graphene Oxide Reduction by Laser Scribing. C 2021, 7, 48. [Google Scholar] [CrossRef]
- Liao, J.; Zhang, X.; Sun, Z.; Chen, H.; Fu, J.; Si, H.; Ge, C.; Lin, S. Laser-Induced Graphene-Based Wearable Epidermal Ion-Selective Sensors for Noninvasive Multiplexed Sweat Analysis. Biosensors 2022, 12, 397. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.U.; Lee, J.H.; Lee, C.W.; Cho, S.C.; Hong, S.M.; Ma, Y.W.; Jeong, S.Y.; Shin, B.S. Green Synthesis of Laser-Induced Graphene with Copper Oxide Nanoparticles for Deicing Based on Photo-Electrothermal Effect. Nanomaterials 2022, 12, 960. [Google Scholar] [CrossRef] [PubMed]
- Paterakis, G.; Vaughan, E.; Gawade, D.R.; Murray, R.; Gorgolis, G.; Matsalis, S.; Anagnostopoulos, G.; Buckley, J.L.; O’Flynn, B.; Quinn, A.J.; et al. Highly Sensitive and Ultra-Responsive Humidity Sensors Based on Graphene Oxide Active Layers and High Surface Area Laser-Induced Graphene Electrodes. Nanomaterials 2022, 12, 2684. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Du, J.; Li, Y.; Li, X.; Zhang, C.; Zhang, X.; Zhang, Z.; Zhou, J.; Pan, X.; Xie, E. Facile Fabrication of Flexible Graphene-Based Micro-Supercapacitors with Ultra-High Areal Performance. ACS Appl. Energy Mater. 2020, 3, 8415–8422. [Google Scholar] [CrossRef]
- Liu, H.; Moon, K.S.; Li, J.; Xie, Y.; Liu, J.; Sun, Z.; Lu, L.; Tang, Y.; Wong, C.P. Laser-Oxidized Fe3O4 Nanoparticles Anchored on 3D Macroporous Graphene Flexible Electrodes for Ultrahigh-Energy in-Plane Hybrid Micro-Supercapacitors. Nano Energy 2020, 77, 105058. [Google Scholar] [CrossRef]
- Liu, F.; Liu, C.; Li, X.; Zhang, L.; Zhao, W.; Zhang, G. Graphene-Based Integrated Planar On-Chip Micro-Supercapacitors with No Internal Connection. Integr. Ferroelectr. 2020, 206, 96–104. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, C.; Liu, L.; Li, X.; Liu, F. Graphene-Based Planar on-Chip Micro-Supercapacitors with Winding Interdigitated Microelectrodes. Ferroelectrics 2019, 547, 129–136. [Google Scholar] [CrossRef]
- Pei, Y.R.; Zhao, M.; Zhou, H.Y.; Yang, C.C.; Jiang, Q. Hollow N-Doped Carbon Nanofibers Provide Superior Potassium-Storage Performance. Nanoscale Adv. 2020, 2, 4187–4198. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhai, H.J.; Han, G. Superior Performance of Highly Flexible Solid-State Supercapacitor Based on the Ternary Composites of Graphene Oxide Supported Poly(3,4-Ethylenedioxythiophene)-Carbon Nanotubes. J. Power Sources 2016, 323, 125–133. [Google Scholar] [CrossRef]
- Giuri, A.; Colella, S.; Listorti, A.; Rizzo, A.; Mele, C.; Corcione, C.E. GO/Glucose/PEDOT:PSS Ternary Nanocomposites for Flexible Supercapacitors. Compos. Part B Eng. 2018, 148, 149–155. [Google Scholar] [CrossRef]
- Song, K.; Yang, R.; Chen, X.; Wang, X.; Chen, G.; Zhao, N. The Structures of CoFe2O4/PEDOT Electrodes Effect on the Stability and Specific Capacity for Electrochemical Energy Storage. Appl. Surf. Sci. 2021, 542, 148670. [Google Scholar] [CrossRef]
- Li, Y.; Xia, Z.; Gong, Q.; Liu, X.; Yang, Y.; Chen, C.; Qian, C. Polyaniline Nanowire Arrays Oriented on the Functionalized RGO/PEDOT/PP Fabric Substrate for High Performance Supercapacitors with Mechanical Flexibility. Synth. Met. 2021, 280, 116891. [Google Scholar] [CrossRef]
- Liu, F.; Xie, L.; Wang, L.; Chen, W.; Wei, W.; Chen, X.; Luo, S.; Dong, L.; Dai, Q.; Huang, Y.; et al. Hierarchical Porous RGO/PEDOT/PANI Hybrid for Planar/Linear Supercapacitor with Outstanding Flexibility and Stability. Nanomicro Lett. 2020, 12, 17. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, Y.; He, X.; Mao, X.; Zhou, Y.; Xu, J.; Yang, Y. Modifying Reduced Graphene Oxide by Conducting Polymer Through a Hydrothermal Polymerization Method and Its Application as Energy Storage Electrodes. Nanoscale Res. Lett. 2019, 14, 226. [Google Scholar] [CrossRef]
- Yan, J.; Huang, Y.; Zhang, X.; Gong, X.; Chen, C.; Nie, G.; Liu, X.; Liu, P. MoS2-Decorated/Integrated Carbon Fiber: Phase Engineering Well-Regulated Microwave Absorber. Nanomicro Lett. 2021, 13, 114. [Google Scholar] [CrossRef]
- Choudhary, P.; Biswas, S.; Kandoth, N.; Tayde, D.; Chatterjee, A.; Chattopadhyay, S.; Das, A.; Swarnakar, S.; Pramanik, S.K. Graphene Quantum Dots Alleviate ROS-Mediated Gastric Damage. iScience 2022, 25, 104062. [Google Scholar] [CrossRef]
- Islam, K.; Suhail, A.; Pan, G. A Label-Free and Ultrasensitive Immunosensor for Detection of Human Chorionic Gonadotrophin Based on Graphene FETs. Biosensors 2017, 7, 27. [Google Scholar] [CrossRef] [PubMed]
- Hassanin, H.A.; Taha, A. Sonochemical-Assisted Biogenic Synthesis of Theophrasite β-Ni(OH)2 Nanocluster Using Chia Seeds Extract: Characterization and Anticancer Activity. Nanomaterials 2022, 12, 1919. [Google Scholar] [CrossRef]
- He, G.; Yan, G.; Song, Y.; Wang, L. Biomass Juncus Derived Nitrogen-Doped Porous Carbon Materials for Supercapacitor and Oxygen Reduction Reaction. Front. Chem. 2020, 8, 226. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Wang, J.; Cheng, X.; Xie, W.; Gao, Z.; Zhang, X.; Xu, Y.; Yi, D.; Yang, Y.; Wang, X.; et al. Riemannian Surface on Carbon Anodes Enables Li-Ion Storage at −35 °C. ACS Cent. Sci. 2022, 8, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yi, Z.; Liu, L.; Yang, J.; Zhang, C.; Pan, X.; Chi, F. 3D Hollow Rgo Microsphere Decorated with ZnO Nanoparticles as Efficient Sulfur Host for High-Performance Li-s Battery. Nanomaterials 2020, 10, 1633. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Ning, J.; Wang, D.; Zhang, J.; Dong, J.; Zhang, C.; Shen, X.; Hao, Y. All-Solid-State Planner Micro-Supercapacitor Based on Graphene/NiOOH/Ni(OH)2 via Mask-Free Patterning Strategy. J. Power Sources 2019, 418, 130–137. [Google Scholar] [CrossRef]
- Yang, K.; Cho, K.; Kim, S. Electrochemical Characteristics of Flexible Micro Supercapacitors with Reduced Graphene Oxide-Carbon Nanotubes Composite Electrodes. Superlattices Microstruct. 2018, 118, 145–151. [Google Scholar] [CrossRef]
- Yun, J.; Kim, D.; Lee, G.; Ha, J.S. All-Solid-State Flexible Micro-Supercapacitor Arrays with Patterned Graphene/MWNT Electrodes. Carbon 2014, 79, 156–164. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Guo, Y.; Zhao, J. Manufacturing Shape-Controllable Flexible PEDOT/rGO Composite Electrodes for Planar Micro-Supercapacitors. Materials 2024, 17, 2144. https://doi.org/10.3390/ma17092144
Hu H, Guo Y, Zhao J. Manufacturing Shape-Controllable Flexible PEDOT/rGO Composite Electrodes for Planar Micro-Supercapacitors. Materials. 2024; 17(9):2144. https://doi.org/10.3390/ma17092144
Chicago/Turabian StyleHu, Haiwei, Yanyan Guo, and Jiang Zhao. 2024. "Manufacturing Shape-Controllable Flexible PEDOT/rGO Composite Electrodes for Planar Micro-Supercapacitors" Materials 17, no. 9: 2144. https://doi.org/10.3390/ma17092144
APA StyleHu, H., Guo, Y., & Zhao, J. (2024). Manufacturing Shape-Controllable Flexible PEDOT/rGO Composite Electrodes for Planar Micro-Supercapacitors. Materials, 17(9), 2144. https://doi.org/10.3390/ma17092144