The Impact of Impurity Gases on the Hydrogen Embrittlement Behavior of Pipeline Steel in High-Pressure H2 Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Fatigue Crack Propagation Experiment
2.3. Fatigue Crack and Fractography Analyses
2.4. Hydrogen Permeation Experiment
3. Results
3.1. Fatigue Crack Growth Rate Curves
3.2. Microscopic Fatigue Morphology
3.3. Results of Hydrogen Gas Permeation
4. Discussion
4.1. Hydrogen Acceleration of Fatigue Crack Propagation
4.2. Effects of CO2 and O2 on the Hydrogen Embrittlement Behavior of L360 Pipeline Steel
4.3. Combined Effects of CO2 and O2 on the Hydrogen Embrittlement Behavior of L360 Pipeline Steel
5. Conclusions
- (1)
- The L360 pipeline steel exhibited a significant hydrogen embrittlement phenomenon in a high-pressure hydrogen environment. The addition of 350 ppm O2 in a 6 MPa H2 environment decreased the fatigue crack growth rate to the level observed in the N2 environment. When the O2 concentration was reduced to 35 ppm, the fatigue crack growth rate was similar to that in a pure hydrogen environment. This indicated that O2 could suppress the hydrogen embrittlement sensitivity of pipeline steel in a high-pressure H2 environment and that this suppression effect was concentration-dependent.
- (2)
- CO2 had a slight promoting effect on the hydrogen embrittlement behavior of L360 pipeline steel in a high-pressure H2 environment. CO2 enhanced the material’s hydrogen permeation by shortening the penetration time of hydrogen through the material. Conversely, O2 inhibited the material’s hydrogen permeation, not only by extending the breakthrough time but also by reducing the material’s steady-state current value. As the O2 concentration increased, its inhibitory effect strengthened; a 30-fold signal reduction was observed at 350 ppm. When O2 and CO2 coexisted in hydrogen gas, O2 masked the promoting effect of CO2 on hydrogen permeation. This demonstrated that O2’s adsorption capacity surpassed that of CO2 on the surface of L360 steel.
- (3)
- In a 6 MPa H2 environment, when 35 ppm O2 and 2.5% CO2 were simultaneously added, the fatigue crack growth rate of L360 pipeline steel was reduced in low-stress conditions, producing lower fatigue crack growth rates. The fracture mode was predominantly ductile. Under high-stress conditions where the fatigue crack growth rate was higher, the inhibitory effect of 35 ppm O2 and 2.5% CO2 almost disappeared, and the fracture mode became brittle. This was attributed to the fact that at lower crack growth rates, 35 ppm O2 and 2.5% CO2 had ample time to replace the H2 molecules on the metal surface, thereby reducing the hydrogen coverage on the metal surface. At higher crack growth rates, the gas mixture did not have sufficient time to replace the H2 molecules on the metal surface.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, X.; Zhou, Q.; Yu, D. The future of hydrogen energy: Bio-hydrogen production technology. Int. J. Hydrogen Energy 2022, 47, 33677–33698. [Google Scholar] [CrossRef]
- Zhang, C.; Shao, Y.; Shen, W.; Li, H.; Nan, Z.; Dong, M.; Bian, J.; Cao, X. Key Technologies of Pure Hydrogen and Hydrogen-Mixed Natural Gas Pipeline Transportation. ACS Omega 2023, 8, 19212–19222. [Google Scholar] [CrossRef] [PubMed]
- Lipiäinen, S.; Lipiäinen, K.; Ahola, A.; Vakkilainen, E. Use of existing gas infrastructure in European hydrogen economy. Int. J. Hydrogen Energy 2023, 48, 31317–31329. [Google Scholar] [CrossRef]
- Tian, X.; Pei, J. Study progress on the pipeline transportation safety of hydrogen-blended natural gas. Heliyon 2023, 9, e21454. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhao, J.; Li, J.; Yu, B.; Wang, J.; Lyu, R.; Xi, Q. Research progress on corrosion and hydrogen embrittlement in hydrogen–natural gas pipeline transportation. Nat. Gas Ind. B 2023, 10, 570–582. [Google Scholar] [CrossRef]
- Ban, J.; Yan, X.; Song, B.; Deng, S.; Wu, H.; Tang, Y.; Yin, W. Research Progress and Prospects on Hydrogen Damage in Welds of Hydrogen-Blended Natural Gas Pipelines. Processes 2023, 11, 3180. [Google Scholar] [CrossRef]
- Wang, H.; Tong, Z.; Zhou, G.; Zhang, C.; Zhou, H.; Wang, Y.; Zheng, W. Research and demonstration on hydrogen compatibility of pipelines: A review of current status and challenges. Int. J. Hydrogen Energy 2022, 47, 28585–28604. [Google Scholar] [CrossRef]
- Yan, S.; Jia, G.; Xu, W.; Li, R.; Lu, Y.; Cai, M. Computational fluid dynamic analysis of hydrogen-injected natural gas for mixing and transportation behaviors in pipeline structures. Energy Sci. Eng. 2023, 11, 2912–2928. [Google Scholar] [CrossRef]
- Ahad, M.T.; Bhuiyan, M.M.H.; Sakib, A.N.; Corral, A.B.; Siddique, Z. An Overview of Challenges for the Future of Hydrogen. Materials 2023, 16, 6680. [Google Scholar] [CrossRef]
- Flamme, S.; Benrath, D.; Glanz, S.; Hoffart, F.; Pielow, C.; Roos, M.; Span, R.; Wagner, H.J.; Schönauer, A.L. The Interdisciplinary Approach of the German Case Study to Enable a Low Carbon Economy by Hydrogen and CCS. Energy Procedia 2019, 158, 3709–3714. [Google Scholar] [CrossRef]
- Herman, H.; McEvily, A.J. Technology. Treatise on Materials Science and Technology, Vol. 19, Experimental Methods, Part B. J. Eng. Mater. Technol. 1985, 107, 95. [Google Scholar] [CrossRef]
- Wei, R.P.; Gangloff, R.P. Fracture Mechanics: Perspectives and Directions; ASTM Internation: West Conshohocken, PA, USA, 1989; Volume 709. [Google Scholar] [CrossRef]
- Li, Q.D.; Ghadiani, H.; Jalilvand, V.; Alam, T.; Farhat, Z.; Islam, M.A. Hydrogen Impact: A Review on Diffusibility, Embrittlement Mechanisms, and Characterization. Materials 2024, 17, 965. [Google Scholar] [CrossRef] [PubMed]
- Gangloff, R.P.; Somerday, B.P. Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: The Problem, Its Characterisation and Effects on Particular Alloy Classes; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Thompson, A.W.; Bernstein, I.M. Effect of Hydrogen on Behavior of Materials; Metallurgical Society of AIME: New York, NY, USA, 1976. [Google Scholar]
- Michler, T.; Boitsov, I.E.; Malkov, I.L.; Yukhimchuk, A.A.; Naumann, J. Assessing the effect of low oxygen concentrations in gaseous hydrogen embrittlement of DIN 1.4301 and 1.1200 steels at high gas pressures. Corros. Sci. 2012, 65, 169–177. [Google Scholar] [CrossRef]
- Somerday, B.P.; Sofronis, P.; Nibur, K.A.; San Marchi, C.; Kirchheim, R. Elucidating the variables affecting accelerated fatigue crack growth of steels in hydrogen gas with low oxygen concentrations. Acta Mater. 2013, 61, 6153–6170. [Google Scholar] [CrossRef]
- Zhou, C.; He, Y.; Zheng, J. Hydrogen uptake induced by CO2 enhances hydrogen embrittlement of iron in hydrogen blended natural gas. Corros. Sci. 2022, 207, 110594. [Google Scholar] [CrossRef]
- Shang, J.; Chen, W.F.; Zheng, J.Y.; Hua, Z.L.; Zhang, L.; Zhou, C.S.; Gu, C.H. Enhanced hydrogen embrittlement of low-carbon steel to natural gas/hydrogen mixtures. Scr. Mater. 2020, 189, 67–71. [Google Scholar] [CrossRef]
- ASTM E647–08; Standard Test Method for Measurement of Fatigue Crack Growth Rates. ASTM International: West Conshohocken, PA, USA, 2010.
- Shang, J.; Guo, J.; Xing, B.; Gao, R.; Hua, Z. CO2 effect on the fatigue crack growth of X80 pipeline steel in hydrogen-enriched natural gas: Experiment vs. DFT. Int. J. Hydrogen Energy 2024, 66, 636–644. [Google Scholar] [CrossRef]
- Wang, C.-M.; Zhang, L.J.; Ma, Y.J.; Zhang, S.-Z.; Yang, R.; Hu, Q.-M. Hydrogen-surface interaction from first-principles calculations and its implication to hydrogen embrittlement mechanisms of titanium. Appl. Surf. Sci. 2023, 621, 156871. [Google Scholar] [CrossRef]
- Shinko, T.; Hénaff, G.; Halm, D.; Benoit, G.; Bahsoun, H. Characteristic Dependency of Hydrogen-Affected Fatigue Crack Growth and Crack Tip Plasticity on Low Loading Frequency in α-Iron. Metall. Mater. Trans. A 2020, 51, 4313–4326. [Google Scholar] [CrossRef]
- Wang, L.H.; Chang, C.; Wang, J.; Chu, F.C. Aging evaluation of environmentally assisted cracking on the reactor pressure vessel materials of nuclear power plant. Mon. J. Taipower’s Eng. 2005, 685, 18–31. [Google Scholar]
- Röthig, M.; Hoschke, J.; Tapia, C.; Venezuela, J.; Atrens, A. A review of gas phase inhibition of gaseous hydrogen embrittlement in pipeline steels. Int. J. Hydrogen Energy 2024, 60, 1239–1265. [Google Scholar] [CrossRef]
- Atrens, A.; Gray, E.; Venezuela, J. Feasibility of the Use of Gas Phase Inhibition of Hydrogen Embrittlement in Gas Transmission Pipelines Carrying Hydrogen: A Review. JOM 2022, 75, 232–238. [Google Scholar] [CrossRef]
- Komoda, R.; Kubota, M.; Staykov, A.; Ginet, P.; Barbier, F.; Furtado, J. Inhibitory effect of oxygen on hydrogen-induced fracture of A333 pipe steel. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 1387–1401. [Google Scholar] [CrossRef]
- Zhou, C.S.; Chen, X.Y.; Wang, Z.; Zheng, S.Q.; Li, X.; Zhang, L. Effects of environmental conditions on hydrogen permeation of X52 pipeline steel exposed to high H2S-containing solutions. Corros. Sci. 2014, 89, 30–37. [Google Scholar] [CrossRef]
- Matsuoka, S.; Tanaka, H.; Homma, N.; Murakami, Y. Influence of hydrogen and frequency on fatigue crack growth behavior of Cr-Mo steel. Int. J. Fract. 2011, 168, 101–112. [Google Scholar] [CrossRef]
- Zhuo, J.; Zhang, C.; Zhang, S.; Chen, L.; Yang, H.; Liu, F.; Du, Y.; Lv, L.; Zheng, S. Influence of hydrogen environment on fatigue fracture morphology of X80 pipeline steel. J. Mater. Res. Technol. 2023, 22, 1039–1047. [Google Scholar] [CrossRef]
- Yamabe, J.; Yoshikawa, M.; Matsunaga, H.; Matsuoka, S. Hydrogen trapping and fatigue crack growth property of low-carbon steel in hydrogen-gas environment. Int. J. Fract. 2017, 102, 202–213. [Google Scholar] [CrossRef]
- Lee, D.; Nishikawa, H.; Oda, Y.; Noguchi, H. Small fatigue crack growth characteristics and fracture surface morphology of low carbon steel in hydrogen gas. Int. J. Fract. 2013, 179, 147–156. [Google Scholar] [CrossRef]
- Horstemeyer, M.F.; Farkas, D.; Kim, S.; Tang, T.; Potirniche, G. Nanostructurally small cracks (NSC): A review on atomistic modeling of fatigue. Int. J. Fatigue 2010, 32, 1473–1502. [Google Scholar] [CrossRef]
- Macadre, A.; Artamonov, M.; Matsuoka, S.; Furtado, J. Effects of hydrogen pressure and test frequency on fatigue crack growth properties of Ni–Cr–Mo steel candidate for a storage cylinder of a 70MPa hydrogen filling station. Eng. Fract. Mech. 2011, 78, 3196–3211. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.J.; Meng, L.X.; Liu, D.; Xu, T.Q.; Xu, D.K.; Shao, X.H.; Shao, C.W.; Li, S.J.; Zhang, P.; et al. Significance of Melt Pool Structure on the Hydrogen Embrittlement Behavior of a Selective Laser-Melted 316L Austenitic Stainless Steel. Materials 2023, 16, 1741. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Wen, X.; Wei, S.; Zheng, S. Effect of Impurity Atoms on the Adsorption/Dissociation of Hydrogen Sulfide and Hydrogen Diffusion on the Fe(100) Surface. ACS Omega 2021, 6, 14701–14712. [Google Scholar] [CrossRef] [PubMed]
- Tlatlik, J. Investigation of cleavage fracture under dynamic loading conditions: Part I fractographic analysis. Eng. Fract. Mech. 2017, 184, 39–50. [Google Scholar] [CrossRef]
- Sun, Q.; He, J.; Nagao, A.; Ni, Y.; Wang, S. Hydrogen-prompted heterogeneous development of dislocation structure in Ni. Acta Mater. 2023, 246, 118660. [Google Scholar] [CrossRef]
- Djukic, M.B.; Bakic, G.M.; Sijacki Zeravcic, V. The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion. Eng. Fract. Mech. 2019, 216, 106528. [Google Scholar] [CrossRef]
- Park, J.; Shin, G.; Kim, H.-J.; Kim, K.; Yoon, S.C.; Sohn, S.S.; Lee, M.-G. A continuum scale chemo-mechanical model for multi-trap hydrogen transport in deformed polycrystalline metals. Int. J. Plast. 2024, 173, 103890. [Google Scholar] [CrossRef]
- Sofronis, P.; Liang, Y.; Aravas, N. Hydrogen induced shear localization of the plastic flow in metals and alloys. Eur. J. Mech. A/Solids 2001, 20, 857–872. [Google Scholar] [CrossRef]
- Hasan, M.S.; Kapci, M.F.; Bal, B.; Koyama, M.; Bayat, H.; Xu, W. An atomistic study on the HELP mechanism of hydrogen embrittlement in pure metal Fe. Int. J. Hydrogen Energy 2024, 57, 60–68. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, K. Analysis of Hydrogen-Assisted Brittle Fracture Using Phase-Field Damage Modelling Considering Hydrogen Enhanced Decohesion Mechanism. Metals 2022, 12, 1032. [Google Scholar] [CrossRef]
- Zhang, B.; Ye, X.; Luo, W.; Sang, G. Micro-mechanism study on the effect of O2 poisoned ZrCo surface on hydrogen absorption performance. Int. J. Hydrogen Energy 2023, 48, 19605–19618. [Google Scholar] [CrossRef]
- Yang, F.Q.; Zhang, J.Z.; Zhang, Y. Modeling Corrosion Product Film Formation and Hydrogen Diffusion at the Crack Tip of Austenitic Stainless Steel. Materials 2023, 16, 5799. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Zhao, F.; Lin, Q.; Li, X.; Xiao, J.; Gu, Y.; Chen, Q. Effect of loading rate on the dislocation emission from crack-tip under hydrogen environment. Mater. Today Commun. 2023, 37, 107269. [Google Scholar] [CrossRef]
Material | C | Si | Mn | P | S | Cr | Cu | Mo | V | Fe |
---|---|---|---|---|---|---|---|---|---|---|
L360 | 0.10 | 0.33 | 1.33 | 0.01 | 0.002 | 0.10 | 0.038 | 0.10 | 0.05 | Bal. |
1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|
6 MPa H2 | 6 MPa N2 | 2.5% CO2 + 6 MPa H2 | 350 ppm O2 + 6 MPa H2 | 35 ppm O2 + 6 MPa H2 | 2.5% CO2 + 350 ppm O2 + 6 MPa H2 | 2.5% CO2 + 35 ppm O2 + 6 MPa H2 |
Environment | Penetration Time (s) | Steady-State Current |
---|---|---|
6 MPa H2 | 571 ± 4 | 1.2637 ± 0.0103 |
2.5% CO2 + 6 MPa H2 | 421 ± 5 | 1.1731 ± 0.0311 |
350 ppm O2 + 6 MPa H2 | 963 ± 7 | 0.0411 ± 0.0004 |
35 ppm O2 + 6 MPa H2 | 834 ± 9 | 0.5674 ± 0.0225 |
2.5% CO2 + 350 ppm O2 + 6 MPa H2 | 819 ± 7 | 0.5217 ± 0.0009 |
2.5% CO2 + 35 ppm O2 + 6 MPa H2 | 950 ± 5 | 0.0289 ± 0.0006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Zhou, H.; Zhang, L. The Impact of Impurity Gases on the Hydrogen Embrittlement Behavior of Pipeline Steel in High-Pressure H2 Environments. Materials 2024, 17, 2157. https://doi.org/10.3390/ma17092157
Zhou C, Zhou H, Zhang L. The Impact of Impurity Gases on the Hydrogen Embrittlement Behavior of Pipeline Steel in High-Pressure H2 Environments. Materials. 2024; 17(9):2157. https://doi.org/10.3390/ma17092157
Chicago/Turabian StyleZhou, Chengshuang, Hongbin Zhou, and Lin Zhang. 2024. "The Impact of Impurity Gases on the Hydrogen Embrittlement Behavior of Pipeline Steel in High-Pressure H2 Environments" Materials 17, no. 9: 2157. https://doi.org/10.3390/ma17092157
APA StyleZhou, C., Zhou, H., & Zhang, L. (2024). The Impact of Impurity Gases on the Hydrogen Embrittlement Behavior of Pipeline Steel in High-Pressure H2 Environments. Materials, 17(9), 2157. https://doi.org/10.3390/ma17092157