Functionalized γ-Boehmite Covalent Grafting Modified Polyethylene for Lithium-Ion Battery Separator
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation Methods
2.2.1. Preparation and Functionalization of γ-AlOOH
2.2.2. Preparation of PE-PDA-AlOOH and PE/AlOOH
2.3. Preparation of Electrodes and Cells
2.4. Characterization
2.4.1. Porosity Testing
2.4.2. Liquid Absorption Testing
2.4.3. Ion Conductivity Testing
2.4.4. Cyclic Voltammetry
2.4.5. Battery Performance Testing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, T. A dual-purpose separator employing phosphine oxide with metal hydroxide incorporation onto polyethylene matrix to improve interfacial stability and safety of high nickel concentration lithium-ion batteries. Colloids Surf. A Physicochem. Eng. Asp. 2024, 682, 132937. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, J.H.; Lee, J.; Kim, S.; Cho, S.O. Safety and performance enhanced boehmite-coupled polyethylene nanocomposite separator for lithium-ion batteries by synergetic effects of silane treatment and electron irradiation. J. Power Sources 2023, 560, 232718. [Google Scholar] [CrossRef]
- Bicy, K.; Mathew, D.E.; Stephen, A.M.; Royaud, I.; Poncot, M.; Godard, O.; Aranda, L.; Rouxel, D.; Kalarikkal, N.; Thomas, S. Sustainable lithium-ion battery separators derived from polyethylene oxide/lignocellulose coated electrospun P(VDF-TrFE) nanofibrous membranes. Surf. Interfaces 2022, 29, 101716. [Google Scholar] [CrossRef]
- Bicy, K.; Mathew, D.E.; Stephen, A.M.; Royaud, I.; Poncot, M.; Godard, O.; Aranda, L.; Rouxel, D.; Kalarikkal, N.; Thomas, S. Bio-mimicking organic-inorganic hybrid ladder-like polysilsesquioxanes as a surface modifier for polyethylene separator in lithium-ion batteries. J. Membr. Sci. 2021, 620, 118886. [Google Scholar]
- Sengupta, S.; Tubio, C.R.; Pinto, R.S.; Barbosa, J.; Silva, M.M.; Gonçalves, R.; Kundu, M.; Lanceros-Mendez, S.; Costa, C.M. Ternary composites of poly(vinylidene fluoride-co-hexafluoropropylene) with silver nanowires and titanium dioxide nanoparticles as separator membranes for lithium-ion batteries. J. Colloid Interface Sci. 2024, 668, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Babiker, D.M.; Usha, Z.R.; Wan, C.; Hassaan, M.M.; Chen, X.; Li, L. Recent progress of composite polyethylene separators for lithium/sodium batteries. J. Power Sources 2023, 564, 232853. [Google Scholar] [CrossRef]
- Venkatalaxmi, A.; Padmavathi, B.S.; Amaranath, T.J. A general solution of unsteady Stokes equations. Fluid Dyn. Res. 2004, 35, 229–236. [Google Scholar] [CrossRef]
- Francis, C.F.; Kyratzis, I.L.; Best, A.S. Lithium-Ion Battery Separators for Ionic-Liquid Electrolytes: A Review. Adv. Mater. 2020, 32, e1904205. [Google Scholar] [CrossRef] [PubMed]
- Nitou, M.V.M.; Pang, Y.; Wan, Z.; Li, W.; Zhong, Z.; Muhammad, W.; Muhammad, S.; Muhammad, S.; Niu, Y.; Lv, W. LiFePO4 as a dual-functional coating for separators in lithium-ion batteries: A new strategy for improving capacity and safety. J. Energy Chem. 2023, 86, 490–498. [Google Scholar] [CrossRef]
- Modigunta, J.K.R.; Park, K.N.; Shin, S.C.; Murali, G.; Haran, U.H.; Kim, J.; Yeon, J.; Park, S.; Jang, H.; Park, Y.H.; et al. Waterborne spontaneous and robust coating of POSS nanoparticles on hydrophobic surfaces for application as an advanced separator in lithium ion batteries. J. Energy Storage 2023, 74, 109344. [Google Scholar] [CrossRef]
- Serra, J.P.; Barbosa, J.C.; Silva, M.M.; Gonçalves, R.; Uranga, J.; Costa, C.M.; Guerrero, P.; de la Caba, K.; Lanceros-Mendez, S. Wool/soy protein isolate membranes as separators toward more sustainable lithium-ion batteries. J. Energy Storage 2024, 75, 109748. [Google Scholar] [CrossRef]
- Hyun, D.E.; Jung, Y.J.; Kim, T.W.; Koo, S.M.; Park, C.; Kim, H.S.; Kim, S.; Shin, W.H.; Lee, D.W.; Oh, J.M. Multi-functional Al2O3-coated separators for high-performance lithium-ion batteries: Critical effects of particle shape. Ceram. Int. 2023, 49, 30147–30155. [Google Scholar] [CrossRef]
- Deng, N.; Wang, L.; Feng, Y.; Liu, M.; Li, Q.; Wang, G.; Zhang, L.; Kang, W.; Cheng, B.; Liu, Y. Co-based and Cu-based MOFs modified separators to strengthen the kinetics of redox reaction and inhibit lithium-dendrite for long-life lithium-sulfur batteries. Chem. Eng. J. 2020, 388, 124241. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Z.; Shi, L.; Zhao, Y.; Yuan, S. Enhanced thermal stability and lithium ion conductivity of polyethylene separator by coating colloidal SiO2 nanoparticles with porous shell. J. Colloid Interface Sci. 2019, 554, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Widiyandari, H.; Putra, O.A.; Purwanto, A.; Abidin, Z. Synthesis of PVDF/SiO2 nanofiber membrane using electrospinning method as a Li-ion battery separator. Mater. Today Proc. 2021, 44, 3245–3248. [Google Scholar] [CrossRef]
- Das, A.; Melepurakkal, A.; Sreeram, P.; Gireesh, K.T.; Balakrishnan, N.T.; Fatima, M.J.; Pullanchiyodan, A.; Ahn, J.H.; Shelke, M.V.; Raghavan, P. Exceptional cyclability of thermally stable PVdF-co-HFP/SiO2 nanocomposite polymer electrolytes for sodium ion batteries. J. Energy Storage 2023, 73, 109026. [Google Scholar] [CrossRef]
- Bicy, K.; Gueye, A.B.; Rouxel, D.; Kalarikkal, N.; Thomas, S. Lithium-ion battery separators based on electrospun PVDF: A review. Surf. Interfaces 2022, 31, 101977. [Google Scholar] [CrossRef]
- Fu, W.; Xu, R.; Zhang, X.; Tian, Z.; Huang, H.; Xie, J.; Lei, C. Enhanced wettability and electrochemical performance of separators for lithium-ion batteries by coating core-shell structured silica-poly (cyclotriphosphazene-co-4,4′-sulfonyldiphenol) particles. J. Power Sources 2019, 436, 226839. [Google Scholar] [CrossRef]
- Park, J.; Kwon, Y.J.; Yun, J.; Zhang, K.; Lee, M.J.; Choi, G.M.; woo Bae, J.; Kim, S.H.; Chang, J.H.; Pin, M.W.; et al. Ultra-thin SiO2 nanoparticle layered separators by a surface multi-functionalization strategy for Li-metal batteries: Highly enhanced Li-dendrite resistance and thermal properties. Energy Storage Mater. 2024, 65, 103135. [Google Scholar] [CrossRef]
- Jeon, H.; Yeon, D.; Lee, T.; Park, J.; Ryou, M.H.; Lee, Y.M. A water-based Al2O3 ceramic coating for polyethylene-based microporous separators for lithium-ion batteries. J. Power Sources 2016, 315, 161–168. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, H.; Lee, T.; Ryou, M.H.; Lee, Y.M. Synergistic thermal stabilization of ceramic/co-polyimide coated polypropylene separators for lithium-ion batteries. J. Power Sources 2015, 294, 537–544. [Google Scholar] [CrossRef]
- Kim, U.; Roh, Y.; Choi, S.; Lee, Y.S.; Ryou, S.Y.; Lee, Y.M. Ultra-thin ceramic coated separator for high energy density lithium-ion battery:In-depth analysis on Al2O3 nano particles penetration into the structure pore. J. Ind. Eng. Chem. 2023, 126, 137–144. [Google Scholar] [CrossRef]
- Kennedy, S.; Kim, J.; Kim, J.; Phiri, I.; Ryou, S.Y. Water-based dual polymer ceramic-coated composite separator for high-energy-density lithium secondary batteries. J. Ind. Eng. Chem. 2024, 130, 638–647. [Google Scholar] [CrossRef]
- Yan, X.; Wang, Y.; Liu, C.; Guo, M.; Tao, J.; Cao, J.; Fu, D.; Dai, L.; Yang, X. Engineering two-dimensional pores in freestanding TiO2/graphene gel film for high performance lithium ion battery. J. Energy Chem. 2018, 27, 176–182. [Google Scholar] [CrossRef]
- Parikh, D.; Jafta, C.J.; Thapaliya, B.P.; Sharma, J.; Meyer, H.M., III; Silkowski, C.; Li, J. Al2O3/TiO2 coated separators: Roll-to-roll processing and implications for improved battery safety and performance. J. Power Sources 2021, 507, 230259. [Google Scholar] [CrossRef]
- Yeon, D.; Lee, Y.; Ryou, M.H.; Lee, Y.M. New flame-retardant composite separators based on metal hydroxides for lithium-ion batteries. Electrochim. Acta 2015, 157, 282–289. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Lan, Y.; Song, Z.; Luo, J.; Wei, X.; Sun, F.; Yue, Z.; Yin, C.; Zhou, L.; et al. Aqueous aluminide ceramic coating polyethylene separators for lithium-ion batteries. Solid State Ion. 2020, 345, 115188. [Google Scholar] [CrossRef]
- Yang, C.; Tong, H.; Luo, C.; Yuan, S.; Chen, G.; Yang, Y. Boehmite particle coating modified microporous polyethylene membrane: A promising separator for lithium ion batteries. J. Power Sources 2017, 348, 80–86. [Google Scholar] [CrossRef]
- Xu, R.; Lin, X.; Huang, X.; Xie, J.; Jiang, C.; Lei, C. Boehmite-coated microporous membrane for enhanced electrochemical performance and dimensional stability of lithium-ion batteries. J. Solid State Electrochem. 2017, 22, 739–747. [Google Scholar] [CrossRef]
- Holtmann, J.; Schäfer, M.; Niemöller, A.; Winter, M.; Lex-Balducci, A.; Obeidi, S. Boehmite-based ceramic separator for lithium-ion batteries. J. Appl. Electrochem. 2015, 46, 69–76. [Google Scholar] [CrossRef]
- Deng, Y.; Song, X.; Ma, Z.; Zhang, X.; Shu, D.; Nan, J. Al2O3/PVdF-HFP-CMC/PE separator prepared using aqueous slurry and post-hot-pressing method for polymer lithium-ion batteries with enhanced safety. Electrochim. Acta 2016, 212, 416–425. [Google Scholar] [CrossRef]
- Muchakayala, R.; Yarramsetti, S.; Maram, P.S.; Kalluri, S.; Ran, F.; Sangaraju, S. Modified ceramic coated polyethylene separator—A strategy for using lithium metal as anode with superior electrochemical performance and thermal stability. J. Energy Storage 2023, 68, 107687. [Google Scholar] [CrossRef]
- Makki, M.; Ayoub, G.; Lee, C.W.; Bae, C.; Colin, X. Effect of battery fast cyclic charging on the mechanical and fracture behavior of the lithium-ion battery separator. Polym. Degrad. Stab. 2023, 216, 110469. [Google Scholar] [CrossRef]
- Lingappan, N.; Lee, W.; Passerini, S.; Pecht, M. A comprehensive review of separator membranes in lithium-ion batteries. Renew. Sustain. Energy Rev. 2023, 187, 113726. [Google Scholar] [CrossRef]
- Thakur, A.K.; Kumar, A.; Park, H.; Kim, H.; Ahmed, M.S.; Saleque, A.M.; Vikram, M.P.; Saidur, R.; Ma, Y.; Hwang, J.Y. Composite separators for internal thermal management in rechargeable lithium batteries: A review. J. Energy Storage 2023, 73, 108873. [Google Scholar] [CrossRef]
- Nitou, M.V.M.; Tang, M.; Niu, Y.; Pang, Y.; Wan, Z.; Mawuli, S.E.; Leoba, J.A.; Xiaodong, F.; Lv, W. Separator with active coating for fast and stable Li-ion batteries. J. Power Sources 2024, 602, 234406. [Google Scholar] [CrossRef]
- Babiker, D.M.; Usha, Z.R.; Wan, C.; Zhao, Y.; Deng, W.; Yang, H.; Tan, Y.; Chen, X.; Li, L. A polyolefin-based hybrid separator for durable and advanced lithium-/sodium-metal batteries. J. Energy Storage 2023, 73, 108888. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, F.; Chen, C.; Shi, L.; Yuan, S.; Sun, L.; Zhu, J. Self-assembly of PEI/SiO2 on polyethylene separators for Li-ion batteries with enhanced rate capability. ACS Appl. Mater. Interfaces 2015, 7, 3314–3322. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Q.; Wei, X.; Song, Z.; Lan, Y.; Luo, W.; Yin, C.; Yue, Z.; Zhou, L.; Li, X. A novel three-dimensional boehmite nanowhiskers network-coated polyethylene separator for lithium-ion batteries. Ceram. Int. 2021, 47, 10153–10162. [Google Scholar] [CrossRef]
- Zhang, J.; Xiang, Y.; Jamil, M.I.; Lu, J.; Zhang, Q.; Zhan, X.; Chen, F. Polymers/zeolite nanocomposite membranes with enhanced thermal and electrochemical performances for lithium-ion batteries. J. Membr. Sci. 2018, 564, 753–761. [Google Scholar] [CrossRef]
- Kololuoma, T.; Leppäniemi, J.; Majumdar, H.; Branquinho, R.; Herbei-Valcu, E.; Musat, V.; Martins, R.; Fortunato, E.; Alastalo, A. Gravure printed sol–gel derived AlOOH hybrid nanocomposite thin films for printed electronics. J. Mater. Chem. C 2015, 3, 1776–1786. [Google Scholar] [CrossRef]
- Gong, Z.W.P.; Li, Z.; Mi, Y.; Sun, J.; Niu, L. Photochemical synthesis of fluorinated graphene via a simultaneous fluorination and reduction route. RSC Adv. 2013, 3, 6327–6330. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, F.; Lin, J.; Wei, S.Y.; Chen, D.; Gao, J.M.; Huang, Z.; Ding, X.X.; Tang, C. Nanoparticles assembly of boehmite nanofibers without a surfactant. Mater. Res. Bull. 2008, 43, 1709–1715. [Google Scholar] [CrossRef]
- Wypych, F.; Bail, A.; Halma, M.; Nakagaki, S. Immobilization of iron(III) porphyrins on exfoliated MgAl layered double hydroxide, grafted with (3-aminopropyl)triethoxysilane. J. Catal. 2005, 234, 431–437. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Li, Z.; Gong, P.; Liu, X.; Zhang, L.; Ren, J.; Wang, H.; Yang, S. Synthesis of fluorinated graphene with tunable degree of fluorination. Carbon 2012, 50, 5403–5410. [Google Scholar] [CrossRef]
- Vasudevan, S.; Manickam, M.; Sivasubramanian, R. A sol–gel derived LaCoO3 perovskite as an electrocatalyst for Al–air batteries. Dalton Trans. 2024, 53, 3713–3721. [Google Scholar] [CrossRef]
- Caiut, J.M.A.; Rocha, L.A.; Sigoli, F.A.; Messaddeq, Y.; Dexpert-Ghys, J.; Ribeiro, S.J. Aluminoxane–epoxi–siloxane hybrids waveguides. J. Non-Cryst. Solids 2008, 354, 4795–4799. [Google Scholar] [CrossRef]
- Peng, L.; Guo, R.; Lan, J.; Jiang, S.; Lin, S. Microwave-assisted deposition of silver nanoparticles on bamboo pulp fabric through dopamine functionalization. Appl. Surf. Sci. 2016, 386, 151–159. [Google Scholar] [CrossRef]
- Shi, C.; Dai, J.; Huang, S.; Li, C.; Shen, X.; Zhang, P.; Wu, D.; Sun, D.; Zhao, J. A simple method to prepare a polydopamine modified core-shell structure composite separator for application in high-safety lithium-ion batteries. J. Membr. Sci. 2016, 518, 168–177. [Google Scholar] [CrossRef]
- Jeong, S.; An, S.; Jeong, J.; Lee, J.; Kwon, Y. Effect of mesocelluar carbon foam electrode material on performance of vanadium redox flow battery. J. Power Sources 2015, 278, 245–254. [Google Scholar] [CrossRef]
- Wei, X.; Wang, Q.; Song, Z.; Yue, Z.; Tian, T.; Yin, C.; Zhou, L.; Li, X. Effect of hydroxyls and particle size on the electrochemical performance of boehmite coated PE separators for lithium-ion batteries. Solid State Ion. 2021, 366–367, 115652. [Google Scholar] [CrossRef]
Element | Al | O | Si | C |
---|---|---|---|---|
wt% | 42.5 | 49.1 | 1.9 | 6.6 |
Element | Al | O | Si | C |
---|---|---|---|---|
wt% | 38.2 | 49.4 | 2.4 | 10.0 |
Parameter | Thickness (μm) | Porosity (%) | Contact Angle (°) | Liquid Absorption Rate (%) |
---|---|---|---|---|
PE | 12 ± 1 | 41 ± 5 | 35 ± 2 | 107 ± 10 |
PE/AlOOH | 23 ± 2 | 57 ± 4 | 11 ± 1 | 150 ± 12 |
PE-PDA-AlOOH | 15 ± 2 | 67 ± 4 | <5 ± 1 | 164 ± 10 |
Parameter | Rb (Ω) | Ionic Conductivity (mS cm−1) | Rct (Ω) | Rs (Ω) |
---|---|---|---|---|
PE | 2.4 ± 0.2 | 0.24 ± 0.03 | 238.2 ± 15 | 4.68 ± 0.7 |
PE/AlOOH | 1.8 ± 0.3 | 0.58 ± 0.04 | 76.2 ± 5 | 4.17 ± 0.5 |
PE-PDA-AlOOH | 1.2 ± 0.2 | 0.66 ± 0.05 | 51.0 ± 5 | 3.95 ± 0.5 |
Main Materials and Methods | Thickness (μm) | Contact Angle (°) | Thermal Stability | Ionic Conductivity (mS cm−1) | Cycle Stability (%) (No. of Cycles, C Rate) | Refs. |
---|---|---|---|---|---|---|
AlOOH whiskers | 25 | 8.6 | No change at 150 °C | 1.08 (PE: 0.85) | 92% (100, 8 C) | [39] |
AlOOH particles | 18 | Near 0 | No change at 170 °C | 0.65 | 94% (100, 1 C) | [28] |
AlOOH with particle sizes | 26 | 14.7 | 0.76 (PE: 0.27) | 92% (100, 8 C) | [51] | |
1.4 μm AlOOH particles | 26 | 5.7 | No change at 170 °C | 1.0 (PE: 0.55) | 75.1% (200, 1 C) | [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Man, Y.; Nan, H.; Ma, J.; Li, Z.; Zhou, J.; Wang, X.; Li, H.; Xue, C.; Yang, Y. Functionalized γ-Boehmite Covalent Grafting Modified Polyethylene for Lithium-Ion Battery Separator. Materials 2024, 17, 2162. https://doi.org/10.3390/ma17092162
Man Y, Nan H, Ma J, Li Z, Zhou J, Wang X, Li H, Xue C, Yang Y. Functionalized γ-Boehmite Covalent Grafting Modified Polyethylene for Lithium-Ion Battery Separator. Materials. 2024; 17(9):2162. https://doi.org/10.3390/ma17092162
Chicago/Turabian StyleMan, Yuanxin, Hui Nan, Jianzhe Ma, Zhike Li, Jingyuan Zhou, Xianlan Wang, Heqi Li, Caihong Xue, and Yongchun Yang. 2024. "Functionalized γ-Boehmite Covalent Grafting Modified Polyethylene for Lithium-Ion Battery Separator" Materials 17, no. 9: 2162. https://doi.org/10.3390/ma17092162
APA StyleMan, Y., Nan, H., Ma, J., Li, Z., Zhou, J., Wang, X., Li, H., Xue, C., & Yang, Y. (2024). Functionalized γ-Boehmite Covalent Grafting Modified Polyethylene for Lithium-Ion Battery Separator. Materials, 17(9), 2162. https://doi.org/10.3390/ma17092162