Transformation of Coherent Twin Boundary into Basal-Prismatic Boundary in HCP-Ti: A Molecular Dynamics Study
Abstract
:1. Introduction
2. Method
3. Results
3.1. Accumulation of TB Steps
3.2. Emission of Shockley Partial Dislocation
3.3. Repetition of the Accumulation/Emission Process
4. Discussion
5. Conclusions
- (1)
- Under external loading, CTB undergoes transformation into BPB through the accumulation of TB steps and subsequent emission of Shockley partial dislocations. Such transformation occurs gradually, as successive step accumulations and partial emissions adjust for the lattice mismatch between the basal and prismatic orientations.
- (2)
- Shockley partial dislocations play a critical role in the transformation process. When the total mismatch vector is equal to or close to that of a Shockley partial dislocation, BPBs emit partial dislocations and further grow along the stacking faults.
- (3)
- When a pair of CTBs are close to each other, the complex stress state and drastic fluctuations result in severe boundary distortions, facilitating the emission and absorption of partial dislocations, which further assists the transformation from CTB to BPB.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lütjering, G.; Williams, J.C. Titanium, 2nd ed.; Springer: Berlin, Germany; New York, NY, USA, 2007. [Google Scholar]
- Beyerlein, I.J.; Zhang, X.; Misra, A. Growth Twins and Deformation Twins in Metals. Annu. Rev. Mater. Res. 2014, 44, 329–363. [Google Scholar] [CrossRef]
- Xu, B.; Capolungo, L.; Rodney, D. On the importance of prismatic/basal interfaces in the growth of (012) twins in hexagonal close packed crystals. Scr. Mater. 2013, 68, 901–904. [Google Scholar] [CrossRef]
- Liu, B.-Y.; Wang, J.; Li, B.; Lu, L.; Zhang, X.-Y.; Shan, Z.-W.; Li, J.; Jia, C.-L.; Sun, J.; Ma, E. Twinning-like lattice reorientation without a crystallographic twinning plane. Nat. Commun. 2014, 5, 3297. [Google Scholar] [CrossRef]
- Zhang, X.; Li, B.; Wu, X.; Zhu, Y.; Ma, Q.; Liu, Q.; Wang, P.; Horstemeyer, M. Twin boundaries showing very large deviations from the twinning plane. Scr. Mater. 2012, 67, 862–865. [Google Scholar] [CrossRef]
- Lay, S.; Nouet, G. Morphology of (01-12) Twins in Zinc and Related Interfacial Defects. Philos. Mag. A 1995, 72, 603–617. [Google Scholar] [CrossRef]
- Tu, J.; Zhang, X.Y.; Wang, J.; Sun, Q.; Liu, Q.; Tome, C.N. Structural characterization of {10-12} twin boundaries in cobalt. Appl Phys Lett 2013, 103, 051903. [Google Scholar] [CrossRef]
- Wang, J.; Hirth, J.P.; Tome, C.N. (-1012) Twinning nucleation mechanisms in hexagonal-close-packed crystals. Acta Mater. 2009, 57, 5521–5530. [Google Scholar] [CrossRef]
- Tu, J.; Zhang, S.Q. On the {10-12} twinning growth mechanism in hexagonal close-packed metals. Mater. Design 2016, 96, 143–149. [Google Scholar] [CrossRef]
- Ostapovets, A.; Serra, A. Characterization of the matrix-twin interface of a (10-12) twin during growth. Philos. Mag. 2014, 94, 2827–2839. [Google Scholar] [CrossRef]
- Zhou, G.; Ye, L.H.; Wang, H.; Xu, D.S.; Meng, C.G.; Yang, R. A First-Principles Study on Basal/Prismatic Reorientation-Induced Twinning Path and Alloying Effect in Hexagonal Metals. Acta Metall. Sin. 2018, 54, 603–612. [Google Scholar]
- Paidar, V.; Ostapovets, A. The balance between the energies of the symmetric (10-12) twin boundaries and asymmetric basal/prismatic interfaces in hcp metals. Mater. Lett. 2017, 198, 93–96. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, X.Y.; Tu, J.; Ren, Y.; Qin, H.; Liu, Q. Characterization of basal-prismatic interface of {10-12} twin in deformed titanium by high-resolution trans-mission electron microscopy. Philos. Mag. Lett. 2015, 95, 145–151. [Google Scholar] [CrossRef]
- Bache, M.R. A review of dwell sensitive fatigue in titanium alloys: The role of microstructure, texture and operating conditions. Int. J. Fatigue 2003, 25, 1079–1087. [Google Scholar] [CrossRef]
- Sinha, V.; Mills, M.J.; Williams, J.C.; Spowart, J.E. Observations on the faceted initiation site in the dwell-fatigue tested Ti-6242 alloy: Crystallographic orientation and size effects. Met. Mater. Trans. A 2006, 37, 1507–1518. [Google Scholar] [CrossRef]
- Rugg, D.; Dixon, M.; E Dunne, F.P. Effective structural unit size in titanium alloys. J. Strain Anal. Eng. Des. 2007, 42, 269–279. [Google Scholar] [CrossRef]
- Zheng, Z.; Balint, D.S.; Dunne, F.P. Investigation of slip transfer across HCP grain boundaries with application to cold dwell facet fatigue. Acta Mater. 2017, 127, 43–53. [Google Scholar] [CrossRef]
- Dunne, F.; Walker, A.; Rugg, D. A systematic study of hcp crystal orientation and morphology effects in polycrystal deformation and fatigue. Proc. R. Soc. A Math. Phys. Eng. Sci. 2007, 463, 1467–1489. [Google Scholar] [CrossRef]
- Wang, H.; Bao, Q.L.; Zhou, G.; Qiu, J.; Yang, Y.; Ma, Y.; Bai, C.G.; Xu, D.S.; Rugg, D.; Huang, A.J.; et al. Dynamic recrystallization initiated by direct grain reorientation at high-angle grain boundary in α-titanium. J. Mater. Res. 2019, 34, 1608–1621. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Zope, R.R.; Mishin, Y. Interatomic potentials for atomistic simulations of the Ti-Al system. Phys. Rev. B 2003, 68, 024102. [Google Scholar] [CrossRef]
- He, Y.; Liu, Z.; Zhou, G.; Wang, H.; Bai, C.; Rodney, D.; Appel, F.; Xu, D.; Yang, R. Dislocation dipole-induced strengthening in intermetallic TiAl. Scr. Mater. 2017, 143, 98–102. [Google Scholar] [CrossRef]
- He, Y.; Zhou, G.; Liu, Y.X.; Wang, H.; Xu, D.S.; Yang, R. Atomistic simulation of microvoid formation and its influence on crack nucleation in hexagonal titanium. Acta Phys. Sin. 2018, 67, 050203. [Google Scholar]
- Sun, T.; Tu, A.; Wang, H.; Li, S.-J.; Peng, H.; Li, J.-P. Uniaxial Strain-Induced Grain Boundary Migration in Titanium. Acta Met. Sin. English Lett. 2021, 34, 1715–1720. [Google Scholar] [CrossRef]
- Wang, H.; Xu, D.S.; Yang, R. Defect clustering upon dislocation annihilation in α-titanium and α-zirconium with hexagonal close-packed structure. Model. Simul. Mater. Sci. Eng. 2014, 22, 085004. [Google Scholar] [CrossRef]
- Wang, H.; Xu, D.S.; Yang, R. Atomic modelling of crack initiation on twin boundaries in α-titanium under external tensile loading along various orientations. Philos. Mag. Lett. 2014, 94, 779–785. [Google Scholar] [CrossRef]
- Chen, F.-R.; King, A.H. The Further Geometry of Grain-Boundaries in Hexagonal Close-Packed Metals. Acta Crystallogr. Sect. B Struct. Sci. 1987, 43, 416–422. [Google Scholar] [CrossRef]
- Hirel, P. Atomsk: A tool for manipulating and converting atomic data files. Comput. Phys. Commun. 2015, 197, 212–219. [Google Scholar] [CrossRef]
- Li, J. AtomEye: An efficient atomistic configuration viewer. Model. Simul. Mater. Sci. Eng. 2003, 11, 173–177. [Google Scholar] [CrossRef]
- Ostapovets, A.; Gröger, R. Twinning disconnections and basal-prismatic twin boundary in magnesium. Model. Simul. Mater. Sci. Eng. 2014, 22, 025015. [Google Scholar] [CrossRef]
- Zong, H.; Ding, X.; Lookman, T.; Li, J.; Sun, J. Uniaxial stress-driven coupled grain boundary motion in hexagonal close-packed metals: A molecular dynamics study. Acta Mater. 2015, 82, 295–303. [Google Scholar] [CrossRef]
- Barrett, C.D.; El Kadiri, H. The roles of grain boundary dislocations and disclinations in the nucleation of {10-12} twinning. Acta Mater. 2014, 63, 1–15. [Google Scholar] [CrossRef]
- Serra, A.; Bacon, D.J. A new model for {10-12} twin growth in hcp metals. Philos. Mag. A 1996, 73, 333–343. [Google Scholar] [CrossRef]
- Li, B.; Zhang, X. Twinning with zero twinning shear. Scr. Mater. 2016, 125, 73–79. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, X.Y.; Ren, Y.; Tu, J.; Liu, Q. Interfacial structure of {10-12} twin tip in deformed magnesium alloy. Scr. Mater. 2014, 90–91, 41–44. [Google Scholar] [CrossRef]
- JTu; Zhang, X.Y.; Zhou, Z.M.; Huang, C. Structural characterization of {10-12} twin tip in deformed magnesium alloy. Mater. Charact 2015, 110, 39–43. [Google Scholar] [CrossRef]
- Shen, Y.; Lu, L.; Lu, Q.; Jin, Z.; Lu, K. Tensile properties of copper with nano-scale twins. Scr. Mater. 2005, 52, 989–994. [Google Scholar] [CrossRef]
- Li, B.; Yan, P.; Sui, M.; Ma, E. Transmission electron microscopy study of stacking faults and their interaction with pyramidal dislocations in deformed Mg. Acta Mater. 2010, 58, 173–179. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, T.; Bao, Q.; Gao, Y.; Li, S.; Li, J.; Wang, H. Transformation of Coherent Twin Boundary into Basal-Prismatic Boundary in HCP-Ti: A Molecular Dynamics Study. Materials 2024, 17, 2165. https://doi.org/10.3390/ma17092165
Sun T, Bao Q, Gao Y, Li S, Li J, Wang H. Transformation of Coherent Twin Boundary into Basal-Prismatic Boundary in HCP-Ti: A Molecular Dynamics Study. Materials. 2024; 17(9):2165. https://doi.org/10.3390/ma17092165
Chicago/Turabian StyleSun, Tao, Qili Bao, Yang Gao, Shujun Li, Jianping Li, and Hao Wang. 2024. "Transformation of Coherent Twin Boundary into Basal-Prismatic Boundary in HCP-Ti: A Molecular Dynamics Study" Materials 17, no. 9: 2165. https://doi.org/10.3390/ma17092165
APA StyleSun, T., Bao, Q., Gao, Y., Li, S., Li, J., & Wang, H. (2024). Transformation of Coherent Twin Boundary into Basal-Prismatic Boundary in HCP-Ti: A Molecular Dynamics Study. Materials, 17(9), 2165. https://doi.org/10.3390/ma17092165