Creep Resistance and Microstructure Evolution in P23/P91 Welds
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Creep Properties
3.2. Microstructure Characterization of Weld A
3.3. Microstructure Characterization of Weld B
4. Discussion
5. Conclusions
- Stress rupture tests of heterogeneous P23/P91 welds at 500, 550 and 600 °C revealed that the creep resistance of Weld A with a filler consumable matching P91 steel surpassed that of Weld B with a weld metal matching P23 steel. The extrapolated values of Ru/100,000h/T are higher for Weld A at all temperatures studied.
- The failure locations were both stress- and temperature-dependent. The failure locations of most cross-weld samples that ruptured at 550 and 600 °C corresponded to the partially decarburized area of P23 steel or WM23 close to the fusion boundary. This is related to the redistribution of carbon across the fusion boundary. At temperatures of 500 and 550 °C and high applied stresses, failures occurred in the ICHAZ of the P23 steel.
- The partial decarburization of the CGHAZ in the P23 steel (or WM23) was accompanied by the dissolution of M7C3 and M23C6 particles. The precipitates present in these areas included those of the MX, M6X and Fe2 (W, Mo) Laves phases. Thermodynamic simulations proved that the precipitation of the Fe2 (W, Mo) phase in the CGHAZ of the P23 steel and in the partially decarburized WM23 was a consequence of partial decarburization in these areas. This minor phase does not precipitate in the P23 base material/weld metal with a nominal carbon content.
- Thermodynamic and kinetic simulations of carbon redistribution and minor-phase evolution in the P23/P91 welds across the fusion line predicted that carburization occurs primarily in the fusion zones of dissimilar metals. The experimental findings proved these results. The dominant minor phase in the carburized zones was M23C6 carbide.
- Weld A was more resistant to recovery/recrystallization processes in the partially decarburized area of the CG HAZ in the P23 steel than Weld B in the partially decarburized zone of WM23, close to the WM23/P91 fusion zone.
- These results confirm that the higher creep resistance of Weld A is related to its higher microstructural stability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, D.J. Creep Performance of Dissimilar P91 to Low Alloy Steel Weldments. In Proceedings of the Power Plant and Renewables; Strang, A., Conroy, R.D., Banks, W.M., Blacklar, M., Leggett, J., McColvin, G.M., Simson, S., Smith, M., Starr, F., Vanstone, R.W., Eds.; IOM: London, UK, 2003; Volume 6, pp. 281–294. [Google Scholar]
- Heuser, H.; Jochum, C.; Bendick, W.; Hanh, B. Welding of New Pipe Steels in Modern High Efficiency Power Stations with High Steam Parameters. In Proceedings of the IIW International Conference Safety and Reliability of Welded Components in Energy Processing Industry, Graz, Austria, 10–11 July 2008; Verlag der TU Graz: Graz, Austria, 2008; pp. 217–224. [Google Scholar]
- Barnard, P.M.; Buchanan, L.W.; Banie, M. Material developments for supercritical boilers and pipework. In Proceedings 9th Liege Conference on Materials for Advanced Power Engineering 2010; Lecomte-Beckers, J., Contrepois, Q., Beck, T., Kuhn, B., Eds.; Schriften des Forschungszentrum Jűlich: Jűlich, Germany, 2010; Volume 94, pp. 39–54. ISBN 978-3-89336-685-9. [Google Scholar]
- Abe, F.; Tabuchi, M. Microstructure and Creep Strength of Welds in Advanced Ferritic Power Plant Steels. Sci. Technol. Weld. Join. 2004, 9, 22–30. [Google Scholar] [CrossRef]
- Masuyama, F.; Yokoyama, T.; Sawaragi, Y.; Iseda, A. Development of a Tungsten Strengthened Low Alloy Steel with Improved Weldability. In Materials for Advanced Power Engineering; Springer: Dordrecht, The Netherlands, 1994; pp. 173–181. ISBN 978-94-010-4455-4. [Google Scholar]
- Kozeschnik, E.; Pölt, P.; Brett, S.; Buchmayr, B. Dissimilar 2.25Cr/9Cr and 2Cr/0.5CrMoV Steel Welds, Part 1: Characterisation of Weld Zone and Numerical Simulation. Sci. Technol. Weld. Join. 2002, 7, 63–68. [Google Scholar] [CrossRef]
- Francis, J.A.; Mazur, W.; Bhadeshia, H.K.D.H. Review Type IV Cracking in Ferritic Power Plant Steels. Mater. Sci. Technol. 2006, 22, 1387–1395. [Google Scholar] [CrossRef]
- Kimmins, S.T.; Smith, D.J. On the Relaxation of Interface Stresses during Creep of Ferritic Steel Weldments. J. Strain Anal. Eng. Des. 1998, 33, 195–206. [Google Scholar] [CrossRef]
- Watanabe, T.; Yamazaki, M.; Hongo, H.; Tabuchi, M.; Tanabe, T. Effect of Stress on Microstructural Change Due to Aging at 823 K in Multi-Layer Welded Joint of 2.25Cr-1Mo Steel. Int. J. Press. Vessel. Pip. 2004, 81, 279–284. [Google Scholar] [CrossRef]
- Albert, S.K.; Matsui, M.; Hongo, H.; Watanabe, T.; Kubo, K.; Tabuchi, M. Creep Rupture Properties of HAZs of a High Cr Ferritic Steel Simulated by a Weld Simulator. Int. J. Press. Vessel. Pip. 2004, 81, 221–234. [Google Scholar] [CrossRef]
- Arndt, J.; Haarmann, K.; Kottmann, G.; Vaillant, J.C. The T23/T24 Book: New Grades for Waterwalls and Superheaters; Vallourec & Mannesmann Tubes: Meudon, France, 2000. [Google Scholar]
- Miyata, K.; Sawaragi, Y. Effect of Mo and W on the Phase Stability of Precipitates in Low Cr Heat Resistant Steels. ISIJ Int. 2001, 41, 281–289. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, W.; Ping, S. Failure Analysis of T23/TP347H Dissimilar Steel Welded Tube Joint for High Temperature Reheater. Heat Treat. Met. 2016, 41, 199–203. [Google Scholar] [CrossRef]
- Long, H.; Long, Y.; Chen, H. Mechanism of T23/12Cr1MoV Dissimilar Steel Welding Failure in High Temperature Reheater. Electr. Power 2011, 44, 70–73. [Google Scholar]
- Dhooge, A.; Dolby, R.E.; Sebille, J.; Steinmetz, R.; Vinckier, A.G. A Review of Work Related to Reheat Cracking in Nuclear Reactor Pressure Vessel Steels. Int. J. Press. Vessel. Pip. 1978, 6, 329–409. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X. Microstructure Evolution of a Simulated Coarse-Grained Heat-Affected Zone of T23 Steel During Aging. Metall. Mater. Trans. A 2020, 51, 1183–1194. [Google Scholar] [CrossRef]
- Sawada, K.; Tabuchi, M.; Kimura, K. Creep Strength Degradation of ASME P23/T23 Steels. Mater. Sci. Eng. A 2009, 513–514, 128–137. [Google Scholar] [CrossRef]
- DuPont, J.A.; Siefert, J.A.; Shingledecker, J.P. Microstructural evolution and mechanical properties of Grades 23 and 24 creep strength enhanced ferritic steels. Int. Mater. Rev. 2017, 62, 32–56. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Yang, C.; Ge, Z.; Yang, X.; Ren, Y. Aging Properties of T23 Weld Joint in Water Wall of USC Boilers. Dongli Gongcheng Xuebao/J. Chin. Soc. Power Eng. 2015, 35, 325–330 and 335. [Google Scholar]
- Sikka, V.K.; Patriarca, P. Analysis of Weldment Mechanical Properties of Modified 9Cr-1Mo Steel; Metals and Ceramic Division; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1984.
- Haarmann, K.; Vaillant, J.C.; Vandenberghe, B.; Bendick, W.; Arbab, A. The T91/P91 Book, 2nd ed.; Vallourec & Mannesmann Tubes: Boulogne, France, 2002. [Google Scholar]
- Kim, W.-G.; Lee, H.-Y.; Hong, H.-U. Evaluation of Tension and Creep Rupture Behaviors of Long-Term Exposed P91 Steel in a Supercritical Plant. Eng. Fail. Anal. 2020, 116, 104736. [Google Scholar] [CrossRef]
- Strang, A.; Vodarek, V. Z Phase Formation in Martensitic 12CrMoVNb Steel. Mater. Sci. Technol. 1996, 12, 552–556. [Google Scholar] [CrossRef]
- Cipolla, L.; Danielsen, H.K.; Venditti, D.; Di Nunzio, P.E.; Hald, J.; Somers, M.A.J. Conversion of MX Nitrides to Z-Phase in a Martensitic 12% Cr Steel. Acta Mater. 2010, 58, 669–679. [Google Scholar] [CrossRef]
- Sawada, K.; Kushima, H.; Kimura, K.; Tabuchi, M. TTP Diagrams of Z Phase in 9–12% Cr Heat-Resistant Steels. ISIJ Int. 2007, 47, 733–739. [Google Scholar] [CrossRef]
- Danielsen, H.K.; Hald, J. Behaviour of Z Phase in 9–12%Cr Steels. Energy Mater. 2006, 1, 49–57. [Google Scholar] [CrossRef]
- Mayr, P.; Schlacher, C.; Siefert, J.A.; Parker, J.D. Microstructural Features, Mechanical Properties and High Temperature Failures of Ferritic to Ferritic Dissimilar Welds. Int. Mater. Rev. 2018, 64, 1–26. [Google Scholar] [CrossRef]
- Holesinsky, J.; Vodarek, V.; Strilkova, L.; Kubon, Z. Creep Behavior and Microstructural Stability of P23/P91 Dissimilar Welds During Creep at 550 °C. In Proceedings of the Metal 2014: 23rd International Conference On metallurgy and Materials, Brno, Czech Republic, 21–23 May 2014; Tanger Ltd.: Slezska Ostrava, Czech Republic, 2014; pp. 470–475. [Google Scholar]
- Larson, F.R.; Miller, J. A Time-Temperature Relationship for Rupture and Creep Stresses. Trans. Am. Soc. Mech. Eng. 1952, 74, 765–771. [Google Scholar] [CrossRef]
- Seifert, W. Statistische Kenngrössen Aus Der Ausvertung von Zeitstandversuchen; Kammer der Technik: Zittau, Germany, 1987; pp. 129–135. [Google Scholar]
- EN 10216-2:201+A1; Seamless Steel Tubes for Pressure Purposes, Technical Delivery Conditions, Part 2: Non-Alloy and Alloy Steel Tubes with Specified Elevated Temperature Properties. CEN-CENELEC: Brussels, Belgium, 2019.
- Střílková, L.; Kuboň, Z.; Vodárek, V. Creep Failure Characteristics in P23/P91. In Proceedings of the Metal 2010: 19th International Conference on Metallurgy and Materials, Roznov pod Radhostem, Czech Republic, 18–20 May 2010; Tanger Ltd.: Slezska Ostrava, Czech Republic, 2010; pp. 368–373. [Google Scholar]
- Holesinsky, J.; Vodarek, V.; Volodarskaja, A. TEM Characterization of a Fusion Zone in P23/P91 Welds. In Proceedings of the Metal 2017: 26th International Conference on Metallurgy and Materials, Brno, Czech Republic, 24–26 May 2017; Tanger Ltd.: Slezska Ostrava, Czech Republic, 2017; pp. 666–671. [Google Scholar]
- Sopousek, J.; Foret, R. More Sofisticated thermodynamic designs of Welds between Dissimilar Steels. Sci. Technol. Weld Join. 2008, 13, 17–24. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H. Bainite in Steels: Theory and Practice, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2019; ISBN 978-1-315-09667-4. [Google Scholar]
Material | C | S | Mn | Si | P | Cu | Ni | Cr | Mo | V | Ti | Nb | W | N | Al |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P23 | 0.08 | 0.006 | 0.55 | 0.27 | 0.009 | 0.04 | 0.08 | 2.11 | 0.07 | 0.23 | 0.06 | 0.01 | 1.70 | 0.013 | 0.012 |
WM23 | 0.07 | 0.008 | 0.44 | 0.20 | - | 0.04 | 0.17 | 2.47 | 0.06 | 0.25 | - | 0.02 | 1.62 | 0.018 | - |
P91 | 0.11 | 0.004 | 0.51 | 0.38 | 0.015 | 0.17 | 0.42 | 8.67 | 1.00 | 0.23 | 0.01 | 0.07 | 0.01 | 0.048 | 0.012 |
WM91 | 0.11 | 0.008 | 0.66 | 0.21 | 0.009 | 0.04 | 0.82 | 9.50 | 1.02 | 0.22 | 0.01 | 0.04 | 0.06 | 0.028 | - |
Samples | Temperature [°C] | Stress [MPa] | Time to Rupture [h] | Reduction in Area [%] |
---|---|---|---|---|
A1 | 600 | 90 | 5171 | 8.4 |
A2 | 550 | 115 | 26,386 | 8.2 |
B1 | 550 | 100 | 32,669 | 8.8 |
T [°C] | Weld A Ru/100,000h/T [MPa] | Weld B Ru/100,000h/T [MPa] | Mean P23 (EN10 216-2 [31]) | Low P23 (EN10 216-2 [31]) |
---|---|---|---|---|
500 | 167 | 137 | 206 | 165 |
550 | 93 | 76 | 145 | 116 |
600 | 38 | 34 | 79 | 63 |
Phase | V | Cr | Mn | Fe | Mo | W |
---|---|---|---|---|---|---|
M7C3 | 4.7 ± 0.3 | 46.8 ± 1.4 | 2.7 ± 0.2 | 37.0 ± 1.5 | N.A. | 8.8 ± 1.8 |
M23C6 | 1.6 ± 0.5 | 28.0 ± 2.3 | 3.7 ± 0.2 | 44.7 ± 1.4 | N.A. | 22.0 ± 1.1 |
M6X | 1.8 ± 1.0 | 4.6 ± 0.6 | 2.4 ± 0.3 | 16.7 ± 1.2 | 4.9 ± 0.7 | 72.0 ± 1.2 |
Phase | V | Cr | Fe | Mo | W |
---|---|---|---|---|---|
M6X | 1.2 ± 0.6 | 3.1 ± 0.8 | 28.4 ± 5.9 | 6.9 ± 1.2 | 60.5 ± 5.2 |
Fe2 (W, Mo) | - | 2.9 ± 0.5 | 32.9 ± 3.7 | 5.7 ± 0.8 | 58.5 ± 3.4 |
Location | V | Cr | Mn | Fe | Ni | Mo | W |
---|---|---|---|---|---|---|---|
On the side of P23 | 1.2 ± 0.2 | 50.6 ± 3.1 | 2.6 ± 0.3 | 26.4 ± 3.8 | - | 8.3 ± 1.1 | 10.9 ± 2.1 |
On the side of WM91 | 0.7 ± 0.1 | 65.9 ± 1.0 | 1.7 ± 0.2 | 15.2 ± 0.3 | 1.1 ± 0.1 | 14.7 ± 1.0 | 0.7 ± 0.1 |
Area | Minor Phases |
---|---|
BM P23 | M7C3, M23C6, M6X, MX |
P23 decarb. zone | MX, M6X, Laves phase Fe2(W,Mo) |
P23/WM91 fusion zone | M23C6, MX, M6X |
WM91 | M23C6, NbX, secondary MX, Laves phase Fe2Mo |
BM P91 | M23C6, NbX, secondary MX, Laves phase Fe2Mo |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vodárek, V.; Holešinský, J.; Kuboň, Z.; Palupčíková, R.; Váňová, P.; Malcharcziková, J. Creep Resistance and Microstructure Evolution in P23/P91 Welds. Materials 2025, 18, 194. https://doi.org/10.3390/ma18010194
Vodárek V, Holešinský J, Kuboň Z, Palupčíková R, Váňová P, Malcharcziková J. Creep Resistance and Microstructure Evolution in P23/P91 Welds. Materials. 2025; 18(1):194. https://doi.org/10.3390/ma18010194
Chicago/Turabian StyleVodárek, Vlastimil, Jan Holešinský, Zdeněk Kuboň, Renáta Palupčíková, Petra Váňová, and Jitka Malcharcziková. 2025. "Creep Resistance and Microstructure Evolution in P23/P91 Welds" Materials 18, no. 1: 194. https://doi.org/10.3390/ma18010194
APA StyleVodárek, V., Holešinský, J., Kuboň, Z., Palupčíková, R., Váňová, P., & Malcharcziková, J. (2025). Creep Resistance and Microstructure Evolution in P23/P91 Welds. Materials, 18(1), 194. https://doi.org/10.3390/ma18010194