Expansion Characteristics and Shear Behavior of Reinforced Concrete Beams Under Non-Uniform Expansion Induced by Alkali–Silica Reaction
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Materials
2.2. Test Specimens
2.3. ASR Development
2.4. Experimental Investigation of Mechanical Properties
3. Expansion and Cracking Due to ASR
3.1. The Expansion Caused by ASR
3.2. Impact of the Immersion Position
4. Beam Shear Loading Tests
4.1. Effect of ASR on Structural Performance of RC Beams
4.1.1. The Impact of ASR Damage on the Cracking Load
4.1.2. Effects of ASR Damage on the Maximum Load
4.1.3. Effects of ASR Damage on the Deformation Behavior
4.2. Failure Modes of the Specimen
4.3. Load-Deflection Curves
5. Coupled Chemo-Mechanical Analysis Methods
5.1. Basic Model of Coupled Chemo-Mechanical Analysis Methods
5.2. Finite Element Model and Analysis Methods
5.3. Results of ASR Expansion
5.4. Results of Shear Load Simulation
6. Conclusions and Outlooks
6.1. Conclusions
- The immersion location and depth exert a significant impact on concrete expansion, with greater expansion occurring in the soaked region compared to the dry area. Cracks tend to concentrate around the immersed region, while reinforcement helps inhibit cracking on tension zone surfaces and compression zone surfaces due to confinement effects.
- ASR induces an increase in cracking loads of RC beams, particularly pronounced in beams located within the soaked tensile zone. This is attributed to the generation of swelling stresses within the concrete due to ASR, which results in a pre-tensioning stress on the reinforcement. Consequently, this pre-existing stress needs to be counteracted prior to shear testing for crack initiation, thereby leading to an observed increase in cracking loads.
- Due to the occurrence of ASR-induced micro-cracks in the interface zone between concrete aggregate and cement paste, the strength of concrete is adversely affected, resulting in a reduced load-carrying capacity of RC beams after ASR damage, which is particularly evident in the soaked compression zone.
- The ASR damage has an adverse effect on the bond between the aggregate and cement paste, resulting in a reduction in beam ductility. Furthermore, for specimens with greater soaking depths, the detrimental impact of ASR damage on ductility becomes more pronounced.
- The accuracy of the proposed coupled chemical-mechanical analysis method was validated through a comparative analysis between experimental and analytical results. This method has significant potential for future evaluations of the mechanical properties of concrete structures affected by ASR damage.
6.2. Outlooks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, T.N.; Emre Erkmen, R.; Sanchez, L.F.; Li, J. Stiffness degradation of concrete due to alkali-silica reaction: A computational homogenization approach. ACI Mater. J. 2020, 117, 65–76. [Google Scholar]
- Yu, Y.; Nguyen, T.N.; Li, J.; Sanchez, L.F.M.; Nguyen, A. Predicting elastic modulus degradation of alkali silica reaction affected concrete using soft computing techniques: A comparative study. Constr. Build. Mater. 2021, 274, 122024. [Google Scholar] [CrossRef]
- Thériault, F. The Effect of Alkali-Silica Reaction on Aggregate Interlock In Reinforced Concrete and the Use of Digital Image Correlation to Monitor the Long-Term Behaviour of Concrete Structures. Ph.D. Thesis, University of Ottawa, Ottawa, ON, Canada, 2020. [Google Scholar]
- Lu, C.; Bu, S.; Zheng, Y.; Kosa, K. Deterioration of concrete mechanical properties and fracture of steel bars caused by alkali-silica reaction: A review. Structures 2022, 35, 893–902. [Google Scholar] [CrossRef]
- Aryan, H.; Gencturk, B. Influence of alkali-silica reaction on the shear capacity of reinforced concrete beams with minimum transverse reinforcement. Eng. Struct. 2021, 235, 112020. [Google Scholar] [CrossRef]
- Yurtdas, I.; Chen, D.; Hu, D.W.; Shao, J.F. Influence of alkali silica reaction (ASR) on mechanical properties of mortar. Constr. Build. Mater. 2013, 47, 165–174. [Google Scholar] [CrossRef]
- Esposito, R.; Anaç, C.; Hendriks, M.A.N.; Çopuroğlu, O. Influence of the Alkali-Silica Reaction on the Mechanical Degradation of Concrete. J. Mater. Civ. Eng. 2016, 28, 04016007. [Google Scholar] [CrossRef]
- Abd-Elssmand, A.; Ma, J.; Le Pape, Y.; Hayes, N.; Guimaraes, M. Effect of alkali-silica reaction expansion rate and confinement on concrete degradation. ACI Mater. J. 2020, 117, 265–277. [Google Scholar]
- Jones, A.; Clark, L. The effects of restraint on ASR expansion of reinforced concrete. Mag. Concr. Res. 1996, 48, 1–13. [Google Scholar] [CrossRef]
- Kagimoto, H.; Yasuda, Y.; Kawamura, M. ASR expansion, expansive pressure and cracking in concrete prisms under various degrees of restraint. Cem. Concr. Res. 2014, 59, 1–15. [Google Scholar] [CrossRef]
- Barbosa, R.A.; Hansen, S.G.; Hansen, K.K.; Hoang, L.C.; Grelk, B. Influence of alkali-silica reaction and crack orientation on the uniaxial compressive strength of concrete cores from slab bridges. Constr. Build. Mater. 2018, 176, 440–451. [Google Scholar] [CrossRef]
- Fiset, M.; Sanchez, L.F.M.; Bilodeau, S.; Mitchell, D.; Bastien, J. Influence of Alkali-Silica reaction (ASR) on aggregate interlock and shear-friction behavior of reinforced concrete members. Eng. Struct. 2021, 233, 111890. [Google Scholar] [CrossRef]
- Li, P.; Tan, N.; An, X.; Maekawa, K.; Ren, M. Effect of Multi-directional Restraint Induced by Reinforced Steel Bars on ASR Expansion and Bond Performance. J. Adv. Concr. Technol. 2022, 20, 342–358. [Google Scholar] [CrossRef]
- Moallemi, S.; Pietruszczak, S.; Mróz, Z. Deterministic size effect in concrete structures with account for chemo-mechanical loading. Comput. Struct. 2017, 182, 74–86. [Google Scholar] [CrossRef]
- Fan, S.; Hanson, J.M. Effect of alkali silica reaction expansion and cracking on structural behavior of reinforced concrete beams. ACI Struct. J. 1998, 95, 498–505. [Google Scholar]
- Monette, L.; Gardner, N.; Grattan-Bellew, P. Residual strength of reinforced concrete beams damaged by alkali-silica reaction—Examination of damage rating index method. Mater. J. 2002, 99, 42–50. [Google Scholar]
- Morenon, P.; Multon, S.; Sellier, A.; Grimal, E.; Hamon, F.; Kolmayer, P. Flexural performance of reinforced concrete beams damaged by Alkali-Silica Reaction. Cem. Concr. Compos. 2019, 104, 103412. [Google Scholar] [CrossRef]
- Ahmed, T.; Burley, E.; Rigden, S. The state and fatigue strength of reinforced concrete beams affected by alkali-silica reaction. Mater. J. 1998, 95, 376–388. [Google Scholar]
- Morenon, P.; Multon, S.; Sellier, A.; Grimal, E.; Hamon, F.; Bourdarot, E. Impact of stresses and restraints on ASR expansion. Constr. Build. Mater. 2017, 140, 58–74. [Google Scholar] [CrossRef]
- Iskhakov, T.; Timothy, J.J.; Meschke, G. Expansion and deterioration of concrete due to ASR: Micromechanical modeling and analysis. Cem. Concr. Res. 2019, 115, 507–518. [Google Scholar] [CrossRef]
- Ulm, F.-J.; Coussy, O.; Kefei, L.; Larive, C. Thermo-chemo-mechanics of ASR expansion in concrete structures. J. Eng. Mech. 2000, 126, 233–242. [Google Scholar] [CrossRef]
- Charlwood, R.; Solymar, S.; Curtis, D. A review of alkali aggregate reactions in hydroelectric plants and dams. In Proceedings of the International Conference of Alkali-Aggregate Reactions in Hydroelectric Plants and Dams, Fredericton, NB, Canada, 28 September–2 October 1992. [Google Scholar]
- Tanaka, Y.; Takahashi, Y.; Maekawa, K. Crack-gel interaction on the static and fatigue failure of ASR-damaged RC slabs. In Proceedings of the 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Berkeley, CA, USA, 29 May–1 June 2016. [Google Scholar]
- Larive, C. Apports Combinés de L’expérimentation et de la Modélisation à la Compréhension de L’alcali-Réaction et de Ses effets Mécaniques. Ph.D. Thesis, École Nationale des Ponts et Chaussées, Paris, France, 1997. [Google Scholar]
- Comi, C.; Fedele, R.; Perego, U. A chemo-thermo-damage model for the analysis of concrete dams affected by alkali-silica reaction. Mech. Mater. 2009, 41, 210–230. [Google Scholar] [CrossRef]
- Li, P.; Tan, N.; An, X.; Maekawa, K.; Jiang, Z. Restraint Effect of Reinforcing Bar on ASR Expansion and Deterioration Characteristic of the Bond Behavior. J. Adv. Concr. Technol. 2020, 18, 192–210. [Google Scholar] [CrossRef]
- GB/175; Common Portland Cement. Standardization Administration of China: Beijing, China, 2023.
- SL/T352; Test Code for Hydraulic Concrete. China Water Conservancy and Hydropower Press: Beijing, China, 2020.
- Leemann, A.; Lothenbach, B.; Thalmann, C. Influence of superplasticizers on pore solution composition and on expansion of concrete due to alkali-silica reaction. Constr. Build. Mater. 2011, 25, 344–350. [Google Scholar] [CrossRef]
- Zahedi, A.; Trottier, C.; Zhu, Y.; Sanchez, L.F.M. The Impact of Distinct Superplasticizers on the Degradation of Concrete Affected by Alkali-Silica Reaction (ASR). Materials 2023, 16, 3374. [Google Scholar] [CrossRef] [PubMed]
- Hayashida, H.; Sato, Y.; Ueda, T. Failure behavior of RC beams in relation to the extent and location of frost damage. In Proceedings of the 3rd International Conference on the Durability of Concrete Structures, ICDCS 2012, Belfast, UK, 17–19 September 2012. [Google Scholar]
- Multon, S.; Cyr, M.; Sellier, A.; Diederich, P.; Petit, L. Effects of aggregate size and alkali content on ASR expansion. Cem. Concr. Res. 2010, 40, 508–516. [Google Scholar] [CrossRef]
- Ji, X.; Joo, H.E.; Yang, Z.; Takahashi, Y. Time-dependent Effect of Expansion due to Alkali-silica Reaction on Mechanical properties of Concrete. J. Adv. Concr. Technol. 2021, 19, 714–729. [Google Scholar] [CrossRef]
- Kawabata, Y.; Dunant, C.; Yamada, K.; Scrivener, K. Impact of temperature on expansive behavior of concrete with a highly reactive andesite due to the alkali–silica reaction. Cem. Concr. Res. 2019, 125, 105888. [Google Scholar] [CrossRef]
- Shafighfard, T.; Kazemi, F.; Asgarkhani, N.; Yoo, D.-Y. Machine-learning methods for estimating compressive strength of high-performance alkali-activated concrete. Eng. Appl. Artif. Intell. 2024, 136, 109053. [Google Scholar] [CrossRef]
- GB/T50152; Standard of Test Methods of Concrete Structures. China Building Industry Press: Beijing, China, 2012.
- Martin, R.P.; Renaud, J.C.; Multon, S.; Toutlemonde, F. Structural behavior of plain and reinforced concrete beams affected by combined AAR and DEF. In Proceedings of the 14th International Conference on Alkali Aggregate Reaction ICAAR14, Austin, TX, USA, 20–25 May 2012; p. 10. [Google Scholar]
- Plusquellec, G.; Geiker, M.R.; Lindgård, J.; De Weerdt, K. Determining the free alkali metal content in concrete–Case study of an ASR-affected dam. Cem. Concr. Res. 2018, 105, 111–125. [Google Scholar] [CrossRef]
- Saouma, V.E.; Hariri-Ardebili, M.A.; Le Pape, Y.; Balaji, R. Effect of alkali–silica reaction on the shear strength of reinforced concrete structural members. A numerical and statistical study. Nucl. Eng. Des. 2016, 310, 295–310. [Google Scholar] [CrossRef]
- Hajighasemali, S.; Ramezanianpour, A.; Kashefizadeh, M. The effect of alkali–silica reaction on strength and ductility analyses of RC beams. Mag. Concr. Res. 2014, 66, 751–760. [Google Scholar] [CrossRef]
- Mirzagulpour, A.; Yousefpour, H.; Mozafari, A. Effect of alkali silica reaction on the performance of hooked bars. Constr. Build. Mater. 2024, 455, 139212. [Google Scholar] [CrossRef]
- Zahedi, A.; Trottier, C.; Sanchez, L.F.M.; Noël, M. Condition assessment of alkali-silica reaction affected concrete under various confinement conditions incorporating fine and coarse reactive aggregates. Cem. Concr. Res. 2022, 153, 106694. [Google Scholar] [CrossRef]
- Maekawa, K.; Ishida, T.; Kishi, T. Multi-Scale Modeling of Structural Concrete; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Wald, D.M.; Allford, M.T.; Bayrak, O.; Hrynyk, T.D. Development and multiaxial distribution of expansions in reinforced concrete elements affected by alkali–silica reaction. Struct. Concr. 2017, 18, 914–928. [Google Scholar] [CrossRef]
- Takahashi, Y.; Ogawa, S.; Tanaka, Y.; Maekawa, K. Scale-Dependent ASR Expansion of Concrete and Its Prediction coupled with Silica Gel Generation and Migration. J. Adv. Concr. Technol. 2016, 14, 444–463. [Google Scholar] [CrossRef]
- Choinska, M.; Khelidj, A.; Chatzigeorgiou, G.; Pijaudier-Cabot, G. Effects and interactions of temperature and stress-level related damage on permeability of concrete. Cem. Concr. Res. 2007, 37, 79–88. [Google Scholar] [CrossRef]
- Fanijo, E.O.; Kolawole, J.T.; Almakrab, A. Alkali-silica reaction (ASR) in concrete structures: Mechanisms, effects and evaluation test methods adopted in the United States. Case Stud. Constr. Mater. 2021, 15, e00563. [Google Scholar] [CrossRef]
- Maekawa, K.; Okamura, H.; Pimanmas, A. Non-Linear Mechanics of Reinforced Concrete; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Takahashi, Y.; Shibata, K.; Maekawa, K. Chemo-hygral modeling and structural behaviors of reinforced concrete damaged by alkali silica reaction. In Proceedings of the Asian Concrete Federation, Ulaanbaatar, Mongolia, 15–18 August 2024; pp. 1274–1281. [Google Scholar]
- Maekawa, K.; Takahashi, Y.; Shibata, K. Chemo-Hygral Modeling of Structural Concrete Damaged by Alkali Silica Reaction. In Proceedings of the International Conference on Ageing of Materials & Structures, Delft, The Netherland, 26–28 May 2014. [Google Scholar]
- Biot, M.A. Theory of Stability and Consolidation of a Porous Medium Under Initial Stress. J. Math. Mech. 1963, 12, 521–541. [Google Scholar]
- Sanchez, L.F.M.; Fournier, B.; Jolin, M.; Mitchell, D.; Bastien, J. Overall assessment of Alkali-Aggregate Reaction (AAR) in concretes presenting different strengths and incorporating a wide range of reactive aggregate types and natures. Cem. Concr. Res. 2017, 93, 17–31. [Google Scholar] [CrossRef]
Chemical Composition | CaO (%) | SiO2 (%) | Al2O3 (%) | CO2 (%) | MgO (%) | SO3 (%) | Fe2O3 (%) | K2O (%) | P2O5 (%) | TiO2 (%) | Total Alkali Content (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
PO 42.5 | 66.56 | 18.5 | 3.55 | 0 | 1.26 | 3.13 | 4.03 | 1.35 | 0.3 | 0.6 | 0.70 |
Water-To-Cement Ratio | Constituent (kg/m3) | Cube Compressive Strength (MPa) | ||||
---|---|---|---|---|---|---|
Cement | Water | Fine Aggregate | Coarse Aggregate | Superplasticizer | ||
0.45 | 440 | 200 | 443 | 1158 | 1.5 | 49.57 |
Name | Steel Reinforcement | Reinforcement Ratio(%) | Deterioration Surface | Deterioration Depth (mm) |
---|---|---|---|---|
N | 2Φ14 | 0.77 | / | / |
T5 | 2Φ14 | 0.77 | Tension side | 50 |
C5 | 2Φ14 | 0.77 | Compression side | 50 |
T10 | 2Φ14 | 0.77 | Tension side | 100 |
C10 | 2Φ14 | 0.77 | Compression side | 100 |
Location of ASR Damage | Ratio of the Immerse Depth to the Beam Height | ||
---|---|---|---|
0 | 0.25 | 0.5 | |
Tension side | 29 kN | 32.5 kN | 37.5 kN |
Compression side | 30 kN | 30 kN |
Location of ASR Damage | Ratio of the Damage Depth to the Beam Height | ||
---|---|---|---|
0 | 0.25 | 0.5 | |
Tension side | 105.5 kN | 106 kN | 99.6 kN |
Compression side | 90 kN | 94 kN |
Location of ASR Damage | Ratio of the Damage Depth to the Beam Height | ||
---|---|---|---|
0 | 0.25 | 0.5 | |
Tension side | 6.91 | 4.72 | 3.17 |
Compression side | 6.91 | 5.33 | 3.87 |
Name | Deterioration Position | Deterioration Depth (cm) | Pcr (kN) | Py (kN) | Pu (kN) | Pcr/Pu | Reinforcement Yield | Failure Mode |
---|---|---|---|---|---|---|---|---|
N | / | / | 29 | 69 | 105.5 | 0.27 | Yes | Shear compression |
T5 | Tension side | 5 | 32.5 | 80 | 106.0 | 0.31 | Yes | Shear compression |
C5 | Compression side | 5 | 30 | 70 | 90.0 | 0.33 | Yes | Shear compression |
T10 | Tension side | 10 | 37.5 | 87 | 99.6 | 0.38 | Yes | Shear compression |
C10 | Compression side | 10 | 30 | 75 | 94.0 | 0.32 | Yes | Shear compression |
Specimens | Layer Number of the Cell | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
T5 | α | 0.00069 | 0.00067 | 0.00061 | 0.00058 | 0.00056 | 0.00054 | 0.00051 | 0.00047 |
Measured expansion (%) | 0.127 | 0.117 | 0.108 | 0.101 | 0.097 | 0.094 | 0.087 | 0.082 | |
Calculated expansion (%) | 0.125 | 0.12 | 0.109 | 0.104 | 0.1 | 0.097 | 0.091 | 0.085 | |
C5 | α | 0.00033 | 0.00041 | 0.00045 | 0.00046 | 0.00060 | 0.00064 | 0.00085 | 0.00097 |
Measured expansion (%) | 0.055 | 0.070 | 0.077 | 0.086 | 0.100 | 0.119 | 0.145 | 0.169 | |
Calculated expansion (%) | 0.06 | 0.073 | 0.081 | 0.082 | 0.108 | 0.115 | 0.153 | 0.175 | |
T10 | α | 0.00079 | 0.00077 | 0.00073 | 0.00070 | 0.00069 | 0.00066 | 0.00060 | 0.00058 |
Measured expansion (%) | 0.141 | 0.136 | 0.133 | 0.128 | 0.122 | 0.116 | 0.111 | 0.103 | |
Calculatedexpansion (%) | 0.143 | 0.138 | 0.132 | 0.126 | 0.125 | 0.118 | 0.108 | 0.105 | |
C10 | α | 0.00042 | 0.00046 | 0.00048 | 0.00061 | 0.00074 | 0.00084 | 0.00091 | 0.00093 |
Measured expansion (%) | 0.072 | 0.08 | 0.09 | 0.105 | 0.128 | 0.147 | 0.159 | 0.173 | |
Calculated expansion (%) | 0.075 | 0.082 | 0.087 | 0.109 | 0.134 | 0.152 | 0.163 | 0.168 |
Specimens | Cracking Load (kN) | Yielding Load (kN) | Ultimate Load (kN) | ||||||
---|---|---|---|---|---|---|---|---|---|
Calculated Load | Measured Load | Calculated/Measured | Calculated Load | Measured Load | Calculated/ Measured | Calculated Load | Measured Load | Calculated/ Measured | |
N | 27.00 | 29.00 | 0.931 | 66.5 | 69 | 0.964 | 102.30 | 105.50 | 0.970 |
T5 | 30.00 | 32.50 | 0.923 | 67 | 80 | 0.838 | 100.00 | 106.00 | 0.943 |
C5 | 28.00 | 30.00 | 0.933 | 79 | 70 | 1.129 | 95.00 | 90.00 | 1.055 |
T10 | 40.00 | 37.50 | 1.067 | 84.5 | 87 | 0.971 | 98.00 | 99.60 | 0.984 |
C10 | 32.00 | 30.00 | 1.067 | 75.8 | 75 | 1.011 | 91.00 | 94.00 | 0.968 |
Mean | 0.984 | 0.983 | 0.995 | ||||||
SD | 0.068 | 0.093 | 0.039 | ||||||
COV | 0.069 | 0.095 | 0.040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheng, F.; An, X.; Li, M.; Zhou, Y.; Li, P. Expansion Characteristics and Shear Behavior of Reinforced Concrete Beams Under Non-Uniform Expansion Induced by Alkali–Silica Reaction. Materials 2025, 18, 312. https://doi.org/10.3390/ma18020312
Sheng F, An X, Li M, Zhou Y, Li P. Expansion Characteristics and Shear Behavior of Reinforced Concrete Beams Under Non-Uniform Expansion Induced by Alkali–Silica Reaction. Materials. 2025; 18(2):312. https://doi.org/10.3390/ma18020312
Chicago/Turabian StyleSheng, Feng, Xuehui An, Mengliang Li, Yuxiang Zhou, and Pengfei Li. 2025. "Expansion Characteristics and Shear Behavior of Reinforced Concrete Beams Under Non-Uniform Expansion Induced by Alkali–Silica Reaction" Materials 18, no. 2: 312. https://doi.org/10.3390/ma18020312
APA StyleSheng, F., An, X., Li, M., Zhou, Y., & Li, P. (2025). Expansion Characteristics and Shear Behavior of Reinforced Concrete Beams Under Non-Uniform Expansion Induced by Alkali–Silica Reaction. Materials, 18(2), 312. https://doi.org/10.3390/ma18020312