Structural Regulation and Performance Enhancement of Carbon-Based Supercapacitors: Insights into Electrode Material Engineering
Abstract
:1. Introduction
2. Pore Structure
2.1. Pore Formation Strategies
2.1.1. Chemical Activation
2.1.2. Physical Activation
2.1.3. Template Method
2.1.4. In-Situ Templating
2.2. Pore Characteristics and Supercapacitor Performance
3. Heteroatom Doping
3.1. Doping Strategies
3.1.1. Post-Treatment Doping
3.1.2. In-Situ Doping
3.2. Electrochemical Effects of Heteroatom Doping
4. Intrinsic Carbon Defects
4.1. Formation Strategies
4.1.1. Plasma Treatment
4.1.2. Nitrogen Removal Strategy
4.1.3. Ball Milling
4.2. Electrochemical Effects of Intrinsic Carbon Defects
4.2.1. Increased Capacitance
4.2.2. Enhanced Conductivity
4.2.3. Improved Charge–Discharge Rates
4.2.4. Stability and Durability
5. Surface and Interface Engineering
5.1. Electrode Surface Modification
5.2. Chemical Functionalization
6. Conclusions and Outlook
6.1. Summary of Key Findings
6.2. Challenges and Future Directions
6.3. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Abbreviations | Definition |
AC | Activated carbon |
ACAs | Activated carbon aerogels |
AC-HRTEM | Aberration-corrected high-resolution transmission electron microscopy |
AFM | Atomic force microscopy |
ACFs | Activated carbon fibers |
APC | Activated porous carbon |
CAs | Carbon aerogels |
CDC | Citric acid-derived carbon |
CNS | Carbon nanospheres |
CNT | Carbon nanotube |
COF | Covalent organic framework |
CVD | Chemical vapor deposition |
DBD | Dielectric barrier discharge |
DES | Deep eutectic solvents |
DFT | Density functional theory |
DG | Defect graphene |
DGB | Defect-enriched dense graphene blocks |
DOS | Density of states |
ECG | Edge-carboxylated graphene nanosheets |
EG | Expanded graphene |
GCD | Galvanostatic charge–discharge |
GSC | Green stem of cassava |
HAADF | High-angle annular dark-field scanning transmission electron microscopy |
HCN | Hollow carbon nanorods |
HPC | Hierarchical porous carbon |
HPCF | Hollow porous carbon fiber |
HTC | Hydrothermal carbonization |
HRTEM | High-resolution transmission electron microscopy |
HOPG | Highly oriented pyrolytic graphite |
hNCNC | Hierarchical nitrogen-doped carbon nanocage |
OAC | Oxidized activated carbon |
ORR | Oxygen reduction reaction |
PANI | Polyaniline |
PPy | Polypyrrole |
PHP | Phosphoric acid plus hydrogen peroxide |
PHPLC | PHP lignin-derived carbons |
RF | Radio frequency |
SEM | Scanning electron microscopy |
SSA | Specific surface area |
References
- He, K.L.; Shen, R.C.; Hao, L.; Li, Y.J.; Zhang, P.; Jiang, J.Z.; Li, X. Advances in Nanostructured Silicon Carbide Photocatalysts. Acta Phys. Chim. Sin. 2022, 38, 2201021. [Google Scholar] [CrossRef]
- Lei, Y.R.; Wang, Z.; Bao, A.; Tang, X.L.; Huang, X.B.; Yi, H.H.; Zhao, S.Z.; Sun, T.; Wang, J.Y.; Gao, F.Y. Recent advances on electrocatalytic CO2 reduction to resources: Target products, reaction pathways and typical catalysts. Chem. Eng. J. 2023, 453, 139663. [Google Scholar] [CrossRef]
- Wang, D.-G.; Qiu, T.; Guo, W.; Liang, Z.; Tabassum, H.; Xia, D.; Zou, R. Covalent organic framework-based materials for energy applications. Energy Environ. Sci. 2021, 14, 688–728. [Google Scholar] [CrossRef]
- Yadav, A.A.; Hunge, Y.M.; Majumder, S.; Mourad, A.-H.I.; Islam, M.M.; Sakurai, T.; Kang, S.-W. Multiplicative rGO/Cu-BDC MOF for 4-nitrophenol reduction and supercapacitor applications. J. Colloid Interface Sci. 2025, 677, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, S.; Mehta, T.; Chand, P.; Sharma, S.; Kumar, G. Recent advancements in cathode materials for high-performance Li-ion batteries: Progress and prospects. J. Energy Storage 2024, 97, 112818. [Google Scholar] [CrossRef]
- Wang, M.Y.; Bai, Z.C.; Yang, T.; Nie, C.H.; Xu, X.; Wang, Y.X.; Yang, J.; Dou, S.X.; Wang, N.N. Advances in High Sulfur Loading Cathodes for Practical Lithium-Sulfur Batteries. Adv. Energy Mater. 2022, 12, 2201585. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Yadav, A.A.; Kang, S.-W.; Kim, H.; Fujishima, A.; Terashima, C. Nanoflakes-like nickel cobaltite as active electrode material for 4-nitrophenol reduction and supercapacitor applications. J. Hazard. Mater. 2021, 419, 126453. [Google Scholar] [CrossRef] [PubMed]
- Lamba, P.; Singh, P.; Singh, P.; Singh, P.; Bharti; Kumar, A.; Gupta, M.; Kumar, Y. Recent advancements in supercapacitors based on different electrode materials: Classifications, synthesis methods and comparative performance. J. Energy Storage 2022, 48, 103871. [Google Scholar] [CrossRef]
- Xu, T.; Wang, Y.; Liu, K.; Zhao, Q.; Liang, Q.; Zhang, M.; Si, C. Ultralight MXene/carbon nanotube composite aerogel for high-performance flexible supercapacitor. Adv. Compos. Hybrid. Mater. 2023, 6, 108. [Google Scholar] [CrossRef]
- Wang, H.; Gao, X.; Xie, Y.; Guo, E.; Bai, H.; Jiang, F.; Li, Q.; Yue, H. Design and Fabrication of Island-Like CoNi2S4@NiCo-LDH/Biomass Carbon Heterostructure as Advanced Electrodes for High-Performance Hybrid Supercapacitors. Adv. Energy Mater. 2024, 14, 2400493. [Google Scholar] [CrossRef]
- Zhong, M.; Zhang, M.; Li, X. Carbon nanomaterials and their composites for supercapacitors. Carbon. Energy 2022, 4, 950–985. [Google Scholar] [CrossRef]
- Yadav, A.A.; Hunge, Y.M.; Kulkarni, S.B. Synthesis of multifunctional FeCo2O4 electrode using ultrasonic treatment for photocatalysis and energy storage applications. Ultrason. Sonochem. 2019, 58, 104663. [Google Scholar] [CrossRef]
- Guo, L.; Hu, P.; Wei, H. Development of supercapacitor hybrid electric vehicle. J. Energy Storage 2023, 65, 107269. [Google Scholar] [CrossRef]
- Kumar, S.; Saeed, G.; Zhu, L.; Hui, K.N.; Kim, N.H.; Lee, J.H. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review. Chem. Eng. J. 2021, 403, 126352. [Google Scholar] [CrossRef]
- Wang, Y. Nanowire materials for supercapacitor electrode: Preparation, performance and prospects. J. Energy Storage 2024, 97, 112848. [Google Scholar] [CrossRef]
- Forouzandeh, P.; Kumaravel, V.; Pillai, S.C. Electrode Materials for Supercapacitors: A Review of Recent Advances. Catalysts 2020, 10, 969. [Google Scholar] [CrossRef]
- Reenu; Sonia; Phor, L.; Kumar, A.; Chahal, S. Electrode materials for supercapacitors: A comprehensive review of advancements and performance. J. Energy Storage 2024, 84, 110698. [Google Scholar] [CrossRef]
- Hu, X.R.; Wei, L.S.; Chen, R.; Wu, Q.S.; Li, J.F. Reviews and Prospectives of Co3O4-Based Nanomaterials for Supercapacitor Application. ChemistrySelect 2020, 5, 5268–5288. [Google Scholar] [CrossRef]
- Wang, J.H.; Guo, X.H.; Cui, R.L.; Huang, H.; Liu, B.; Li, Y.; Wang, D.; Zhao, D.G.; Dong, J.Q.; Li, S.C.; et al. MnO2/Porous Carbon Nanotube/MnO2 Nanocomposites for High-Performance Supercapacitor. ACS Appl. Nano Mater. 2020, 3, 11152–11159. [Google Scholar] [CrossRef]
- Gao, W.; Li, Y.F.; Zhao, J.T.; Zhang, Z.; Tang, W.W.; Wang, J.; Wu, Z.Y.; Li, Z.Y. Design and Preparation of Graphene/Fe2O3 Nanocomposite as Negative Material for Supercapacitor. Chem. Res. Chin. Univ. 2022, 38, 1097–1104. [Google Scholar] [CrossRef]
- Qiu, C.J.; Jiang, L.L.; Gao, Y.G.; Sheng, L.Z. Effects of oxygen-containing functional groups on carbon materials in supercapacitors: A review. Mater. Des. 2023, 230, 111952. [Google Scholar] [CrossRef]
- Zhai, Z.; Zhang, L.; Du, T.; Ren, B.; Xu, Y.; Wang, S.; Miao, J.; Liu, Z. A review of carbon materials for supercapacitors. Mater. Des. 2022, 221, 111017. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Hou, H.; Xu, W.; Duan, G.; He, S.; Liu, K.; Jiang, S. Recent progress in carbon-based materials for supercapacitor electrodes: A review. J. Mater. Sci. 2021, 56, 173–200. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, F.; Song, Y.; Li, Y. Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J. Mater. Chem. A 2017, 5, 17705–17733. [Google Scholar] [CrossRef]
- Athanasiou, M.; Yannopoulos, S.N.; Ioannides, T. Biomass-derived graphene-like materials as active electrodes for supercapacitor applications: A critical review. Chem. Eng. J. 2022, 446, 137191. [Google Scholar] [CrossRef]
- Hussain, I.; Lamiel, C.; Ahmad, M.; Chen, Y.; Shuang, S.; Javed, M.S.; Yang, Y.; Zhang, K. High entropy alloys as electrode material for supercapacitors: A review. J. Energy Storage 2021, 44, 103405. [Google Scholar] [CrossRef]
- Perdana, M.Y.; Johan, B.A.; Abdallah, M.; Hossain, M.E.; Aziz, M.A.; Baroud, T.N.; Drmosh, Q.A. Understanding the Behavior of Supercapacitor Materials via Electrochemical Impedance Spectroscopy: A Review. Chem. Rec. 2024, 24, e202400007. [Google Scholar] [CrossRef]
- Pershaanaa, M.; Bashir, S.; Ramesh, S.; Ramesh, K. Every bite of Supercap: A brief review on construction and enhancement of supercapacitor. J. Energy Storage 2022, 50, 104599. [Google Scholar] [CrossRef]
- Vandana, M.; Bijapur, K.; Soman, G.; Hegde, G. Recent advances in the development, design and mechanism of negative electrodes for asymmetric supercapacitor applications. Crit. Rev. Solid State Mater. Sci. 2023, 49, 335–370. [Google Scholar] [CrossRef]
- Park, S.; Choi, S.H.; Kim, J.M.; Ji, S.; Kang, S.; Yim, S.; Myung, S.; Kim, S.K.; Lee, S.S.; An, K.-S. Nanoarchitectonics of MXene derived TiO2/graphene with vertical alignment for achieving the enhanced supercapacitor performance. Small 2024, 20, 2305311. [Google Scholar] [CrossRef]
- Su, A.Y.; Apostol, P.; Wang, J.; Vlad, A.; Dinca, M. Electrochemical Capacitance Traces with Interlayer Spacing in Two-dimensional Conductive Metal-Organic Frameworks. Angew. Chem. 2024, 63, e202402526. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Xing, X.; Zhao, S.; Wang, K.; Liu, S. High-energy-density supercapacitors based on high-areal-specific-capacity Ti3C2Tx and a redox-active organic-molecule hybrid electrode. Adv. Funct. Mater. 2022, 32, 2208403. [Google Scholar] [CrossRef]
- Zhao, J.; Burke, A.F. Review on supercapacitors: Technologies and performance evaluation. J. Energy Chem. 2021, 59, 276–291. [Google Scholar] [CrossRef]
- Zhao, J.; Burke, A.F. Electrochemical Capacitors: Performance Metrics and Evaluation by Testing and Analysis. Adv. Energy Mater. 2021, 11, 2002192. [Google Scholar] [CrossRef]
- Jiang, G.; Senthil, R.A.; Sun, Y.; Kumar, T.R.; Pan, J. Recent progress on porous carbon and its derivatives from plants as advanced electrode materials for supercapacitors. J. Power Sources 2022, 520, 230886. [Google Scholar] [CrossRef]
- Zhou, Y.; Qin, S.; Verma, S.; Sar, T.; Sarsaiya, S.; Ravindran, B.; Liu, T.; Sindhu, R.; Patel, A.K.; Binod, P.; et al. Production and beneficial impact of biochar for environmental application: A comprehensive review. Bioresour. Technol. 2021, 337, 125451. [Google Scholar] [CrossRef] [PubMed]
- Saini, S.; Chand, P.; Joshi, A. Biomass derived carbon for supercapacitor applications: Review. J. Energy Storage 2021, 39, 102646. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Song, Q.; Liu, K.; Liu, H.; Pan, J.; Liu, W.; Dai, L.; Zhang, M.; Wang, Y.; Si, C.; et al. Nanocellulose-Assisted Construction of Multifunctional MXene-Based Aerogels with Engineering Biomimetic Texture for Pressure Sensor and Compressible Electrode. Nano-Micro Lett. 2023, 15, 98. [Google Scholar] [CrossRef] [PubMed]
- Khadem, A.H.; Hasan, T.U.; Rahman, A.N.M.M.; Smriti, S.A.; Alimuzzaman, S. Fabrication, properties, and performance of graphene-based textile fabrics for supercapacitor applications: A review. J. Energy Storage 2022, 56, 105988. [Google Scholar] [CrossRef]
- Lakra, R.; Kumar, R.; Sahoo, P.K.; Thatoi, D.; Soam, A. A mini-review: Graphene based composites for supercapacitor application. Inorg. Chem. Commun. 2021, 133, 108929. [Google Scholar] [CrossRef]
- Tian, J.; Yang, Z.; Yin, Z.; Ye, Z.; Wang, J.; Cui, C.; Qian, W. Perspective to the Potential Use of Graphene in Li-Ion Battery and Supercapacitor. Chem. Rec. 2018, 19, 1256–1262. [Google Scholar] [CrossRef]
- Worsley, E.A.; Margadonna, S.; Bertoncello, P. Application of Graphene Nanoplatelets in Supercapacitor Devices: A Review of Recent Developments. Nanomaterials 2022, 12, 3600. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, S.; Kariper, İ.A. Graphene and graphene oxide based aerogels: Synthesis, characteristics and supercapacitor applications. J. Energy Storage 2020, 27, 101038. [Google Scholar] [CrossRef]
- Xu, M.M.; Wang, A.Q.; Xiang, Y.; Niu, J.F. Biomass-based porous carbon/graphene self-assembled composite aerogels for high-rate performance supercapacitor. J. Clean. Prod. 2021, 315, 128110. [Google Scholar] [CrossRef]
- Zhang, C.H.; Wang, H.C.; Gao, Y.F.; Wan, C.C. Cellulose-derived carbon aerogels: A novel porous platform for supercapacitor electrodes. Mater. Des. 2022, 219, 110778. [Google Scholar] [CrossRef]
- Chung, M.Y.; Lo, C.T. High-performance binder-free RuO2 electrospun carbon fiber for supercapacitor electrodes. Electrochim. Acta 2020, 364, 137324. [Google Scholar] [CrossRef]
- Wang, K.M.; Wang, Z.J.; Wang, C.L.; Zhang, X.G.; Wu, L. Carbon fiber electrodes for composite structural supercapacitor: Preparation and modification methods. J. Energy Storage 2024, 98, 113129. [Google Scholar] [CrossRef]
- Gurten Inal, I.I.; Aktas, Z. Enhancing the performance of activated carbon based scalable supercapacitors by heat treatment. Appl. Surf. Sci. 2020, 514, 145895. [Google Scholar] [CrossRef]
- Hsiao, C.-H.; Gupta, S.; Lee, C.-Y.; Tai, N.-H. Effects of physical and chemical activations on the performance of biochar applied in supercapacitors. Appl. Surf. Sci. 2023, 610, 155560. [Google Scholar] [CrossRef]
- Ding, Y.; Li, Y.; Dai, Y.; Han, X.; Xing, B.; Zhu, L.; Qiu, K.; Wang, S. A novel approach for preparing in-situ nitrogen doped carbon via pyrolysis of bean pulp for supercapacitors. Energy 2021, 216, 119227. [Google Scholar] [CrossRef]
- Arvas, M.B.; Gürsu, H.; Gencten, M.; Sahin, Y. Preparation of different heteroatom doped graphene oxide based electrodes by electrochemical method and their supercapacitor applications. J. Energy Storage 2021, 35, 102328. [Google Scholar] [CrossRef]
- Gopalakrishnan, A.; Badhulika, S. Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications. J. Power Sources 2020, 480, 228830. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, W.; Lu, B.; Cheng, Z.; Cao, H.; Li, J.; Fan, Z.; An, X. Controllable heteroatoms doped electrodes engineered by biomass based carbon for advanced supercapacitors: A review. Biomass Bioenergy 2024, 186, 107265. [Google Scholar] [CrossRef]
- Nie, Z.; Wang, Y.; Li, X.; Wang, R.; Zhao, Y.; Song, H.; Wang, H. Heteroatom-doped hierarchical porous carbon from corn straw for high-performance supercapacitor. J. Energy Storage 2021, 44, 103410. [Google Scholar] [CrossRef]
- Ma, R.; Luo, W.; Yan, L.; Guo, C.; Ding, X.; Gong, X.; Jia, D.; Xu, M.; Ai, L.; Guo, N.; et al. Constructing the quinonyl groups and structural defects in carbon for supercapacitor and capacitive deionization applications. J. Colloid Interface Sci. 2023, 645, 685–693. [Google Scholar] [CrossRef]
- Song, F.; Ao, X.; Chen, Q. 2D−3D hybrid hierarchical porous carbon with intrinsic and external defects for high energy density supercapacitors. J. Alloys Compd. 2022, 928, 167218. [Google Scholar] [CrossRef]
- Wu, X.; Yu, M.; Liu, J.; Li, S.; Zhang, X. sp3-Defect and pore engineered carbon framework for high energy density supercapacitors. J. Power Sources 2020, 464, 228203. [Google Scholar] [CrossRef]
- Shah, S.S.; Niaz, F.; Ehsan, M.A.; Das, H.T.; Younas, M.; Khan, A.S.; Rahman, H.U.; Nayem, S.M.A.; Oyama, M.; Aziz, M.A. Advanced strategies in electrode engineering and nanomaterial modifications for supercapacitor performance enhancement: A comprehensive review. J. Energy Storage 2024, 79, 110152. [Google Scholar] [CrossRef]
- Peng, C.; Zhang, X. Chemical Functionalization of Graphene Nanoplatelets with Hydroxyl, Amino, and Carboxylic Terminal Groups. Chemistry 2021, 3, 873–888. [Google Scholar] [CrossRef]
- Li, Z.; Wu, H.; Zhang, D.; Wang, Q.; Sun, H.; Sun, Q.; Wang, B. Revealing the mechanism of oxygen-containing functional groups on the capacitive behavior of activated carbon. Appl. Surf. Sci. 2024, 657, 159744. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Liu, B.; Su, Z. A critical review on the application and recent developments of post-modified biochar in supercapacitors. J. Clean. Prod. 2021, 310, 127428. [Google Scholar] [CrossRef]
- Young, C.; Park, T.; Yi, J.W.; Kim, J.; Hossain, M.S.A.; Kaneti, Y.V.; Yamauchi, Y. Advanced Functional Carbons and Their Hybrid Nanoarchitectures towards Supercapacitor Applications. ChemSusChem 2018, 11, 3546–3558. [Google Scholar] [CrossRef] [PubMed]
- Chang, B.; Yin, H.; Zhang, X.; Zhang, S.; Yang, B. Chemical blowing strategy synthesis of nitrogen-rich porous graphitized carbon nanosheets: Morphology, pore structure and supercapacitor application. Chem. Eng. J. 2017, 312, 191–203. [Google Scholar] [CrossRef]
- Inal, I.I.G.; Holmes, S.M.; Banford, A.; Aktas, Z. The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea. Appl. Surf. Sci. 2015, 357, 696–703. [Google Scholar] [CrossRef]
- Minakshi, M.; Samayamanthry, A.; Whale, J.; Aughterson, R.; Shinde, P.A.; Ariga, K.; Shrestha, L.K. Phosphorous—Containing Activated Carbon Derived from Natural Honeydew Peel Powers Aqueous Supercapacitors. Chem. Asian J. 2024, 19, e202400622. [Google Scholar] [CrossRef]
- Haripriya, M.; Manimekala, T.; Dharmalingam, G.; Minakshi, M.; Sivasubramanian, R. Asymmetric Supercapacitors Based on ZnCo2O4 Nanohexagons and Orange Peel Derived Activated Carbon Electrodes. Chem. Asian J. 2024, 19, e202400202. [Google Scholar] [CrossRef]
- Ouyang, T.Y.; Zhang, T.Y.; Wang, H.Z.; Yang, F.; Yan, J.; Zhu, K.; Ye, K.; Wang, G.L.; Zhou, L.M.; Cheng, K.; et al. High-throughput fabrication of porous carbon by chemical foaming strategy for high performance supercapacitor. Chem. Eng. J. 2018, 352, 459–468. [Google Scholar] [CrossRef]
- Wang, F.; Chen, L.; Li, H.; Duan, G.; He, S.; Zhang, L.; Zhang, G.; Zhou, Z.; Jiang, S. N-doped honeycomb-like porous carbon towards high-performance supercapacitor. Chin. Chem. Lett. 2020, 31, 1986–1990. [Google Scholar] [CrossRef]
- Charoensook, K.; Huang, C.-L.; Tai, H.-C.; Lanjapalli, V.V.K.; Chiang, L.-M.; Hosseini, S.; Lin, Y.-T.; Li, Y.-Y. Preparation of porous nitrogen-doped activated carbon derived from rice straw for high-performance supercapacitor application. J. Taiwan Inst. Chem. Eng. 2021, 120, 246–256. [Google Scholar] [CrossRef]
- Wan, X.; Shen, F.; Hu, J.; Huang, M.; Zhao, L.; Zeng, Y.; Tian, D.; Yang, G.; Zhang, Y. 3-D hierarchical porous carbon from oxidized lignin by one-step activation for high-performance supercapacitor. Int. J. Biol. Macromol. 2021, 180, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Taer, E.; Yanti, N.; Mustika, W.S.; Apriwandi, A.; Taslim, R.; Agustino, A. Porous activated carbon monolith with nanosheet/nanofiber structure derived from the green stem of cassava for supercapacitor application. Int. J. Energy Res. 2020, 44, 10192–10205. [Google Scholar] [CrossRef]
- Yakaboylu, G.A.; Jiang, C.; Yumak, T.; Zondlo, J.W.; Wang, J.; Sabolsky, E.M. Engineered hierarchical porous carbons for supercapacitor applications through chemical pretreatment and activation of biomass precursors. Renew. Energy 2021, 163, 276–287. [Google Scholar] [CrossRef]
- Waribam, P.; Ngo, S.D.; Tran, T.T.V.; Kongparakul, S.; Reubroycharoen, P.; Chanlek, N.; Wei, L.; Zhang, H.; Guan, G.; Samart, C. Waste biomass valorization through production of xylose-based porous carbon microspheres for supercapacitor applications. Waste Manag. 2020, 105, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Breitenbach, S.; Duchoslav, J.; Mardare, A.I.; Unterweger, C.; Stifter, D.; Hassel, A.W.; Fürst, C. Comparative Behavior of Viscose-Based Supercapacitor Electrodes Activated by KOH, H2O, and CO2. Nanomaterials 2022, 12, 677. [Google Scholar] [CrossRef]
- Khuong, D.A.; Nguyen, H.N.; Tsubota, T. Activated carbon produced from bamboo and solid residue by CO2 activation utilized as CO2 adsorbents. Biomass Bioenergy 2021, 148, 106039. [Google Scholar] [CrossRef]
- Cao, W.; Yang, F. Supercapacitors from high fructose corn syrup-derived activated carbons. Mater. Today Energy 2018, 9, 406–415. [Google Scholar] [CrossRef]
- Lee, J.-H.; Lee, S.-Y.; Park, S.-J. Highly Porous Carbon Aerogels for High-Performance Supercapacitor Electrodes. Nanomaterials 2023, 13, 817. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Wang, H.; Xu, L.; Dong, M.; Shen, B.; Wang, X.; Yang, J. Synergistic effect of CO2 and H2O co-activation of Zhundong coal at a low burn-off rate on high performance supercapacitor. J. Power Sources 2023, 556, 232509. [Google Scholar] [CrossRef]
- Xi, Y.; Xiao, Z.; Lv, H.; Sun, H.; Wang, X.; Zhao, Z.; Zhai, S.; An, Q. Template-assisted synthesis of porous carbon derived from biomass for enhanced supercapacitor performance. Diam. Relat. Mater. 2022, 128, 109219. [Google Scholar] [CrossRef]
- Xu, M.; Yu, Q.; Liu, Z.; Lv, J.; Lian, S.; Hu, B.; Mai, L.; Zhou, L. Tailoring porous carbon spheres for supercapacitors. Nanoscale 2018, 10, 21604–21616. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Cheng, R.-R.; Bi, H.-H.; Lu, Y.-H.; Ma, L.-B.; He, X.-J. A review of porous carbons produced by template methods for supercapacitor applications. New Carbon Mater. 2021, 36, 69–81. [Google Scholar] [CrossRef]
- Zhang, Q.; Deng, C.; Huang, Z.; Zhang, Q.; Chai, X.; Yi, D.; Fang, Y.; Wu, M.; Wang, X.; Tang, Y.; et al. Dual-Silica Template-Mediated Synthesis of Nitrogen-Doped Mesoporous Carbon Nanotubes for Supercapacitor Applications. Small 2023, 19, e2205725. [Google Scholar] [CrossRef]
- Qin, L.; Xiao, Z.; Zhai, S.; Wang, S.; Lv, H.; Niu, W.; Zhao, Z.; An, Q. Defect-rich N-doped porous carbon derived from alginate by HNO3 etching combined with a hard template method for high-performance supercapacitors. Mater. Chem. Phys. 2021, 260, 124121. [Google Scholar] [CrossRef]
- Jiang, Y.; He, Z.; Du, Y.; Wan, J.; Liu, Y.; Ma, F. In-situ ZnO template preparation of coal tar pitch-based porous carbon-sheet microsphere for supercapacitor. J. Colloid Interface Sci. 2021, 602, 721–731. [Google Scholar] [CrossRef]
- Mo, F.; Wu, X. MgO template-assisted synthesis of hierarchical porous carbon with high content heteroatoms for supercapacitor. J. Energy Storage 2022, 54, 105287. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, W.; Wang, L.; Zhang, H.; Liu, J.; Peng, T.; Pan, L.; Wang, X.; Wu, M. A Tunable Molten-Salt Route for Scalable Synthesis of Ultrathin Amorphous Carbon Nanosheets as High-Performance Anode Materials for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10, 5577–5585. [Google Scholar] [CrossRef]
- Xue, D.; Zhu, D.; Duan, H.; Wang, Z.; Lv, Y.; Xiong, W.; Li, L.; Liu, M.; Gan, L. Deep-eutectic-solvent synthesis of N/O self-doped hollow carbon nanorods for efficient energy storage. Chem. Commun. 2019, 55, 11219–11222. [Google Scholar] [CrossRef]
- Guan, L.; Hu, H.; Teng, X.-L.; Zhu, Y.-F.; Zhang, Y.-L.; Chao, H.-X.; Yang, H.; Wang, X.-S.; Wu, M.-B. Templating synthesis of porous carbons for energy-related applications: A review. New Carbon Mater. 2022, 37, 25–45. [Google Scholar] [CrossRef]
- Yang, B.; Chen, J.; Lei, S.; Guo, R.; Li, H.; Shi, S.; Yan, X. Spontaneous Growth of 3D Framework Carbon from Sodium Citrate for High Energy- and Power-Density and Long-Life Sodium-Ion Hybrid Capacitors. Adv. Energy Mater. 2017, 8, 1702409. [Google Scholar] [CrossRef]
- Li, Q.; Xu, D.; Ou, X.; Yan, F. Nitrogen-Doped Graphitic Porous Carbon Nanosheets Derived from In Situ Formed g-C3N4 Templates for the Oxygen Reduction Reaction. Chem. Asian J. 2017, 12, 1816–1823. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, P.; Lu, W.-T.; Wang, C.-Y.; Li, Y.-K.; Ding, C.; Gu, J.; Zheng, X.-S.; Cao, F.-F. Co Nanoparticles/Co, N, S Tri-doped Graphene Templated from In-Situ-Formed Co, S Co-doped g-C3N4 as an Active Bifunctional Electrocatalyst for Overall Water Splitting. ACS Appl. Mater. Interfaces 2017, 9, 28566–28576. [Google Scholar] [CrossRef]
- Peng, H.; Yao, B.; Wei, X.; Liu, T.; Kou, T.; Xiao, P.; Zhang, Y.; Li, Y. Pore and Heteroatom Engineered Carbon Foams for Supercapacitors. Adv. Energy Mater. 2019, 9, 1803665. [Google Scholar] [CrossRef]
- Supiyeva, Z.; Pan, X.; Abbas, Q. The critical role of nanostructured carbon pores in supercapacitors. Curr. Opin. Electrochem. 2023, 39, 101249. [Google Scholar] [CrossRef]
- Zhao, K.; Zhao, L.; Zhou, W.; Rao, L.; Wen, S.; Xiao, Y.; Cheng, B.; Lei, S. Pore regulation of well-developed honeycomb-like carbon materials from Zizania latifolia for supercapacitors. J. Energy Storage 2022, 52, 104910. [Google Scholar] [CrossRef]
- Liu, C.; Wang, L.; Xia, Z.; Chen, R.; Wang, H.-L.; Liu, Y. Carbon hollow fibers with tunable hierarchical structure as self-standing supercapacitor electrode. Chem. Eng. J. 2022, 431, 134099. [Google Scholar] [CrossRef]
- Zhao, J.; Lai, H.; Lyu, Z.; Jiang, Y.; Xie, K.; Wang, X.; Wu, Q.; Yang, L.; Jin, Z.; Ma, Y.; et al. Hydrophilic Hierarchical Nitrogen-Doped Carbon Nanocages for Ultrahigh Supercapacitive Performance. Adv. Mater. 2015, 27, 3541–3545. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Barg, S.; Jeong, S.M.; Ostrikov, K. Heteroatom-Doped and Oxygen-Functionalized Nanocarbons for High-Performance Supercapacitors. Adv. Energy Mater. 2020, 10, 2001239. [Google Scholar] [CrossRef]
- Shang, Z.; An, X.; Zhang, H.; Shen, M.; Baker, F.; Liu, Y.; Liu, L.; Yang, J.; Cao, H.; Xu, Q.; et al. Houttuynia-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitor. Carbon 2020, 161, 62–70. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, J.; Zhang, S.; Shang, N.; Zhao, X.; Alshehri, S.M.; Ahamad, T.; Yamauchi, Y.; Xu, X.; Bando, Y. MOF-on-MOF nanoarchitectures for selectively functionalized nitrogen-doped carbon-graphitic carbon/carbon nanotubes heterostructure with high capacitive deionization performance. Nano Energy 2022, 97, 107146. [Google Scholar] [CrossRef]
- Fu, F.; Yang, D.; Zhao, B.; Fan, Y.; Liu, W.; Lou, H.; Qiu, X. Boosting capacitive performance of N, S co-doped hierarchical porous lignin-derived carbon via self-assembly assisted template-coupled activation. J. Colloid Interface Sci. 2023, 640, 698–709. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Liu, X.; Wang, T.; Huang, X.; Dou, J.; Wu, D.; Yu, J.; Wu, S.; Chen, X. S/N-codoped carbon nanotubes and reduced graphene oxide aerogel based supercapacitors working in a wide temperature range. J. Colloid Interface Sci. 2023, 638, 709–718. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Niu, J.; Chuan, X.; Zhao, Y. Nitrogen and phosphorus Co-doped porous carbon: Dopant, synthesis, performance enhancement mechanism and versatile applications. J. Power Sources 2024, 601, 234308. [Google Scholar] [CrossRef]
- Yang, L.; He, X.; Wei, Y.; Bi, H.; Wei, F.; Li, H.; Yuan, C.; Qiu, J. Interconnected N/P co-doped carbon nanocage as high capacitance electrode material for energy storage devices. Nano Res. 2022, 15, 4068–4075. [Google Scholar] [CrossRef]
- Yuan, X.; Xiao, J.; Yılmaz, M.; Zhang, T.C.; Yuan, S. N, P Co-doped porous biochar derived from cornstalk for high performance CO2 adsorption and electrochemical energy storage. Sep. Purif. Technol. 2022, 299, 121719. [Google Scholar] [CrossRef]
- Li, J.; Sun, Y.; Jia, X.; Chen, Y.; Tang, Y.; Wan, P.; Pan, J. Boron, oxygen co-doped porous carbon derived from waste tires with enhanced hydrophilic interface as sustainably high-performance material for supercapacitors. J. Energy Storage 2024, 80, 110320. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, Z.; Chi, J.; Lei, E.; Liu, Y.; Yin, Y.; Yang, Z.; Ma, C.; Li, W.; Luo, S.; et al. Soft-template hydrothermal synthesis of N and B co-doped walnut-shaped porous carbon spheres with hydrophilic surfaces for supercapacitors. Appl. Surf. Sci. 2023, 638, 158016. [Google Scholar] [CrossRef]
- Lim, T.; Seo, B.H.; Kim, S.J.; Han, S.; Lee, W.; Suk, J.W. Nitrogen-Doped Activated Hollow Carbon Nanofibers with Controlled Hierarchical Pore Structures for High-Performance, Binder-Free, Flexible Supercapacitor Electrodes. ACS Omega 2024, 9, 8247–8254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, Q.; Ma, R.; Feng, X.; Chen, F.; Wang, D.; Zhang, B.; Wang, Y.; Guo, N.; Xu, M.; et al. Boosting the capacitive performance by constructing O, N co-doped hierarchical porous structure in carbon for supercapacitor. J. Energy Storage 2024, 82, 110569. [Google Scholar] [CrossRef]
- Zhou, G.; Li, M.C.; Liu, C.; Liu, C.; Li, Z.; Mei, C. 3D Printed Nitrogen-Doped Thick Carbon Architectures for Supercapacitor: Ink Rheology and Electrochemical Performance. Adv. Sci. 2023, 10, 2206320. [Google Scholar] [CrossRef]
- Sylla, N.F.; Ndiaye, N.M.; Ngom, B.D.; Mutuma, B.K.; Momodu, D.; Chaker, M.; Manyala, N. Ex-situ nitrogen-doped porous carbons as electrode materials for high performance supercapacitor. J. Colloid Interface Sci. 2020, 569, 332–345. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Gao, Q.; VahidMohammadi, A.; Dang, J.; Li, Z.; Liang, X.; Hamedi, M.M.; Zhang, L. Liquid-phase exfoliation of layered biochars into multifunctional heteroatom (Fe, N, S) co-doped graphene-like carbon nanosheets. Chem. Eng. J. 2021, 420, 127601. [Google Scholar] [CrossRef]
- Jiao, S.; Guo, L.; Yao, Y.; Zhang, J.; Gao, M.; Zhao, X.; He, D.; Chen, H.; Jiang, J. Controlled porous structures of soybean straw-based carbon via green liquefication and N/S in-situ doping facilitate supercapacitor performance at large current density. Ind. Crop. Prod. 2023, 204, 117338. [Google Scholar] [CrossRef]
- Atchudan, R.; Perumal, S.; Sundramoorthy, A.K.; Manoj, D.; Kumar, R.S.; Almansour, A.I.; Lee, Y.R. Facile Synthesis of Functionalized Porous Carbon by Direct Pyrolysis of Anacardium occidentale Nut-Skin Waste and Its Utilization towards Supercapacitors. Nanomaterials 2023, 13, 1654. [Google Scholar] [CrossRef]
- Chen, J.; Yang, X.; Huang, Y.; Huang, R.; Li, X.; Xiong, W.; Xie, M.; Du, C.; Zhang, Y.; Wan, L. Tuning N/O-doped carbon materials for supercapacitors by direct pyrolysis of imidazolinium polymer. J. Energy Storage 2023, 64, 107057. [Google Scholar] [CrossRef]
- Zhao, G.; Chen, C.; Yu, D.; Sun, L.; Yang, C.; Zhang, H.; Sun, Y.; Besenbacher, F.; Yu, M. One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy 2018, 47, 547–555. [Google Scholar] [CrossRef]
- Liu, C.; Wang, K.; Du, Y.; Shan, Y.; Duan, P.; Ramzan, N. Hydrothermal Carbonization of Cellulose with Ammonium Sulfate and Thiourea for the Production of Supercapacitor Carbon. Polymers 2023, 15, 4478. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Zhao, B.; Zhu, L.; Shao, Z. Molten salt synthesis of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors. Carbon 2015, 93, 48–58. [Google Scholar] [CrossRef]
- Chen, W.; Wan, M.; Liu, Q.; Xiong, X.; Yu, F.; Huang, Y. Heteroatom-Doped Carbon Materials: Synthesis, Mechanism, and Application for Sodium-Ion Batteries. Small Methods 2019, 3, 1800323. [Google Scholar] [CrossRef]
- Hu, C.; Dai, L. Doping of Carbon Materials for Metal-Free Electrocatalysis. Adv. Mater. 2018, 31, 1804672. [Google Scholar] [CrossRef]
- Ito, Y.; Shen, Y.; Hojo, D.; Itagaki, Y.; Fujita, T.; Chen, L.; Aida, T.; Tang, Z.; Adschiri, T.; Chen, M. Correlation Between Chemical Dopants and Topological Defects in Catalytically Active Nanoporous Graphene. Adv. Mater. 2016, 28, 10644–10651. [Google Scholar] [CrossRef]
- Du, J.; Liu, L.; Yu, Y.; Zhang, Y.; Lv, H.; Chen, A. N-doped ordered mesoporous carbon spheres derived by confined pyrolysis for high supercapacitor performance. J. Mater. Sci. Technol. 2019, 35, 2178–2186. [Google Scholar] [CrossRef]
- Cheng, N.; Zhou, W.; Liu, J.; Liu, Z.; Lu, B. Reversible Oxygen-Rich Functional Groups Grafted 3D Honeycomb-Like Carbon Anode for Super-Long Potassium Ion Batteries. Nano-Micro Lett. 2022, 14, 146. [Google Scholar] [CrossRef]
- Umezawa, S.; Douura, T.; Yoshikawa, K.; Takashima, Y.; Yoneda, M.; Gotoh, K.; Stolojan, V.; Silva, S.R.P.; Hayashi, Y.; Tanaka, D. Supercapacitor electrode with high charge density based on boron-doped porous carbon derived from covalent organic frameworks. Carbon 2021, 184, 418–425. [Google Scholar] [CrossRef]
- Liu, H.; Wang, M.; Zhai, D.D.; Chen, X.Y.; Zhang, Z.J. Design and theoretical study of carbon-based supercapacitors especially exhibiting superior rate capability by the synergistic effect of nitrogen and phosphor dopants. Carbon 2019, 155, 223–232. [Google Scholar] [CrossRef]
- Li, G.; Mao, K.; Liu, M.; Yan, M.; Zhao, J.; Zeng, Y.; Yang, L.; Wu, Q.; Wang, X.; Hu, Z. Achieving Ultrahigh Volumetric Energy Storage by Compressing Nitrogen and Sulfur Dual-Doped Carbon Nanocages via Capillarity. Adv. Mater. 2020, 32, 2004632. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Li, Y.; Zhu, G.; Shi, J.; Lu, T.; Pan, L. Biomass-Based N, P, and S Self-Doped Porous Carbon for High-Performance Supercapacitors. ACS Sustain. Chem. Eng. 2019, 7, 12052–12060. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, D.; Minakshi, M.; Quadsia, S.; Ahuja, R. Activation-Induced Surface Modulation of Biowaste-Derived Hierarchical Porous Carbon for Supercapacitors. ChemPlusChem 2022, 87, e202200126. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.L.; Lin, Y.T.; Liu, J.L.; Wu, D.D.; Bai, X.; Chen, D.L.; Li, H.Z. Outstanding supercapacitor performance of nitrogen-doped activated carbon derived from shaddock peel. J. Energy Storage 2021, 39, 102640. [Google Scholar] [CrossRef]
- Wang, S.; Feng, J.; Pan, H. Facile preparation of nitrogen-doped hierarchical porous carbon derived from lignin with KCl for supercapacitors. Colloids Surf. A 2022, 651, 129622. [Google Scholar] [CrossRef]
- Cao, X.; Li, Z.; Chen, H.; Zhang, C.; Zhang, Y.; Gu, C.; Xu, X.; Li, Q. Synthesis of biomass porous carbon materials from bean sprouts for hydrogen evolution reaction electrocatalysis and supercapacitor electrode. Int. J. Hydrogen Energy 2021, 46, 18887–18897. [Google Scholar] [CrossRef]
- Meng, Q.; Chen, W.; Wu, L.; Lei, J.; Liu, X.; Zhu, W.; Duan, T. A strategy of making waste profitable: Nitrogen doped cigarette butt derived carbon for high performance supercapacitors. Energy 2019, 189, 116241. [Google Scholar] [CrossRef]
- Ariharan, A.; Ramesh, K.; Vinayagamoorthi, R.; Rani, M.S.; Viswanathan, B.; Ramaprabhu, S.; Nandhakumar, V. Biomass derived phosphorous containing porous carbon material for hydrogen storage and high-performance supercapacitor applications. J. Energy Storage 2021, 35, 102185. [Google Scholar] [CrossRef]
- Huang, J.; Chen, J.; Yin, Z.Y.; Wu, J.G. A hierarchical porous P-doped carbon electrode through hydrothermal carbonization of pomelo valves for high-performance supercapacitors. Nanoscale Adv. 2020, 2, 3284–3291. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.F.; Wang, Q.; Yang, X.; Cai, Z.H.; Xiong, Y.Z.; Huang, B. Preparation of phosphorus-doped porous carbon for high performance supercapacitors by one-step carbonization. RSC Adv. 2020, 10, 17768–17776. [Google Scholar] [CrossRef] [PubMed]
- Elmouwahidi, A.; Castelo-Quibén, J.; Vivo-Vilches, J.F.; Pérez-Cadenas, A.F.; Maldonado-Hódar, F.J.; Carrasco-Marín, F. Activated carbons from agricultural waste solvothermally doped with sulphur as electrodes for supercapacitors. Chem. Eng. J. 2018, 334, 1835–1841. [Google Scholar] [CrossRef]
- Poornima, B.H.; Vijayakumar, T. Hydrothermal synthesis of Boron-doped porous carbon from Azadirachta Indica wood for supercapacitor application. Inorg. Chem. Commun. 2022, 145, 109953. [Google Scholar] [CrossRef]
- Devarajan, J.; Arumugam, P. Boron-doped activated carbon from the stems of Prosopis juliflora as an effective electrode material in symmetric supercapacitors. J. Mater. Sci. Mater. Electron. 2022, 33, 17469–17482. [Google Scholar] [CrossRef]
- Taer, E.; Apriwandi, A.; Nursyafni, N.; Taslim, R. Averrhoa bilimbi leaves-derived oxygen doped 3D-linked hierarchical porous carbon as high-quality electrode material for symmetric supercapacitor. J. Energy Storage 2022, 52, 104911. [Google Scholar] [CrossRef]
- Chen, W.; Wang, X.; Feizbakhshan, M.; Liu, C.; Hong, S.; Yang, P.; Zhou, X. Preparation of lignin-based porous carbon with hierarchical oxygen-enriched structure for high-performance supercapacitors. J. Colloid Interface Sci. 2019, 540, 524–534. [Google Scholar] [CrossRef]
- Sun, Z.; Qu, K.Q.; Li, J.H.; Yang, S.; Yuan, B.N.; Huang, Z.H.; Guo, Z.H. Self-template biomass-derived nitrogen and oxygen co-doped porous carbon for symmetrical supercapacitor and dye adsorption. Adv. Compos. Hybrid. Mater. 2021, 4, 1413–1424. [Google Scholar] [CrossRef]
- Wang, F.P.; Zheng, F.H.; Jiang, J.T.; Li, Y.H.; Luo, Y.T.; Chen, K.B.; Du, J.; Huang, Y.G.; Li, Q.Y.; Wang, H.Q. Microwave-Assisted Preparation of Hierarchical N and O Co-Doped Corn-Cob-Derived Activated Carbon for a High-Performance Supercapacitor. Energy Fuels 2021, 35, 8334–8344. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, Z.; Dai, J.D.; Yan, Y.S. Waste Biomass Based-Activated Carbons Derived from Soybean Pods as Electrode Materials for High-Performance Supercapacitors. ChemistrySelect 2018, 3, 5726–5732. [Google Scholar] [CrossRef]
- Guo, N.N.; Luo, W.X.; Guo, R.H.; Qiu, D.P.; Zhao, Z.B.; Wang, L.X.; Jia, D.Z.; Guo, J.X. Interconnected and hierarchical porous carbon derived from soybean root for ultrahigh rate supercapacitors. J. Alloys Compd. 2020, 834, 155115. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, B.; Zhang, N.; Deng, X.; Jia, X.; Yang, J.; Yang, H. Intrinsic Carbon Defects in Nitrogen and Sulfur Doped Porous Carbon Nanotubes Accelerate Oxygen Reduction and Sulfur Reduction for Electrochemical Energy Conversion and Storage. ACS Appl. Nano Mater. 2023, 6, 15147–15158. [Google Scholar] [CrossRef]
- Gan, G.; Fan, S.; Li, X.; Wang, J.; Bai, C.; Guo, X.; Tade, M.; Liu, S. Nature of Intrinsic Defects in Carbon Materials for Electrochemical Dechlorination of 1,2-Dichloroethane to Ethylene. ACS Catal. 2021, 11, 14284–14292. [Google Scholar] [CrossRef]
- Guo, R.; Lv, C.; Xu, W.; Sun, J.; Zhu, Y.; Yang, X.; Li, J.; Sun, J.; Zhang, L.; Yang, D. Effect of Intrinsic Defects of Carbon Materials on the Sodium Storage Performance. Adv. Energy Mater. 2020, 10, 1903652. [Google Scholar] [CrossRef]
- Zeng, Z.; Liu, Z.; Cao, L.; Dai, M.; Zhang, W.; Zhang, Y.; Ni, W.; Zhang, S. Angulated Edge Intrinsic Defect in Carbon as Bridge-Adsorption Site of CO for Highly Efficient CO2 Electroreduction. Adv. Funct. Mater. 2024, 34, 2400334. [Google Scholar] [CrossRef]
- Zhu, J.; Mu, S. Defect Engineering in Carbon-Based Electrocatalysts: Insight into Intrinsic Carbon Defects. Adv. Funct. Mater. 2020, 30, 2001097. [Google Scholar] [CrossRef]
- Zhu, J.; Huang, Y.; Mei, W.; Zhao, C.; Zhang, C.; Zhang, J.; Amiinu, I.S.; Mu, S. Effects of Intrinsic Pentagon Defects on Electrochemical Reactivity of Carbon Nanomaterials. Angew. Chem. Int. Ed. 2019, 58, 3859–3864. [Google Scholar] [CrossRef]
- Dong, S.; Li, Y.; Zhang, M.; Wang, J.; Li, F.; Wu, S.; Dai, P.; Xing, T.; Gu, X.; Wu, M. Controllable engineering of intrinsic defects on carbon nanosheets enables fast and stable potassium storage performance. Carbon 2023, 204, 507–515. [Google Scholar] [CrossRef]
- Dong, F.; Wu, M.; Zhang, G.; Liu, X.; Rawach, D.; Tavares, A.C.; Sun, S. Defect Engineering of Carbon-based Electrocatalysts for Rechargeable Zinc-air Batteries. Chem. Asian J. 2020, 15, 3737–3751. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Li, Z.; Yang, L.; Hu, L.; Wang, W.; Huang, J.; Zhou, H.; Chen, L.; Hou, Z. Dopant–free edge–rich mesoporous carbon: Understanding the role of intrinsic carbon defects towards oxygen reduction reaction. J. Electroanal. Chem. 2022, 923, 116826. [Google Scholar] [CrossRef]
- Ma, Z.; Tsounis, C.; Kumar, P.V.; Han, Z.; Wong, R.J.; Toe, C.Y.; Zhou, S.; Bedford, N.M.; Thomsen, L.; Ng, Y.H.; et al. Enhanced Electrochemical CO2 Reduction of Cu@CuxO Nanoparticles Decorated on 3D Vertical Graphene with Intrinsic sp3-type Defect. Adv. Funct. Mater. 2020, 30, 1910118. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, Z.; Wang, Y.; Dou, S.; Yan, D.; Liu, D.; Xia, Z.; Wang, S. In Situ Exfoliated, Edge-Rich, Oxygen-Functionalized Graphene from Carbon Fibers for Oxygen Electrocatalysis. Adv. Mater. 2017, 29, 1606207. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Qiao, M.; Jin, R.; Li, Y.; Xiao, Z.; Wang, Y.; Zhang, N.; Xie, C.; He, Q.; Jiang, D.; et al. Bridging the Surface Charge and Catalytic Activity of a Defective Carbon Electrocatalyst. Angew. Chem. Int. Ed. 2019, 58, 1019–1024. [Google Scholar] [CrossRef]
- Sahoo, G.; Polaki, S.R.; Ghosh, S.; Krishna, N.G.; Kamruddin, M.; Ostrikov, K. Plasma-tuneable oxygen functionalization of vertical graphenes enhance electrochemical capacitor performance. Energy Storage Mater. 2018, 14, 297–305. [Google Scholar] [CrossRef]
- Dou, S.; Tao, L.; Wang, R.; El Hankari, S.; Chen, R.; Wang, S. Plasma-Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy. Adv. Mater. 2018, 30, 1705850. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jia, Y.; Yan, X.; Yao, X. Activity Origins in Nanocarbons for the Electrocatalytic Hydrogen Evolution Reaction. Small 2018, 14, 1800235. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zou, X.; Yan, X.; Brown, C.L.; Chen, Z.; Zhu, G.; Yao, X. Defect-driven oxygen reduction reaction (ORR) of carbon without any element doping. Inorg. Chem. Front. 2016, 3, 417–421. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, L.; Du, A.; Gao, G.; Chen, J.; Yan, X.; Brown, C.L.; Yao, X. Defect Graphene as a Trifunctional Catalyst for Electrochemical Reactions. Adv. Mater. 2016, 28, 9532–9538. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Zhang, Q.; Tian, Z.; Li, B.; Yan, W.; Wang, S.; Jiang, K.; Su, J.; Oloman, C.W.; Gyenge, E.L.; et al. Ammonia Thermal Treatment Toward Topological Defects in Porous Carbon for Enhanced Carbon Dioxide Electroreduction. Adv. Mater. 2020, 32, 2001300. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Sun, C.; Jin, Z.; Wang, D.-W.; Yan, X.; Chen, Z.; Zhu, G.; Yao, X. Carbon for the oxygen reduction reaction: A defect mechanism. J. Mater. Chem. A 2015, 3, 11736–11739. [Google Scholar] [CrossRef]
- Yan, X.; Jia, Y.; Yao, X. Defects on carbons for electrocatalytic oxygen reduction. Chem. Soc. Rev. 2018, 47, 7628–7658. [Google Scholar] [CrossRef]
- Lyu, H.; Gao, B.; He, F.; Ding, C.; Tang, J.; Crittenden, J.C. Ball-Milled Carbon Nanomaterials for Energy and Environmental Applications. ACS Sustain. Chem. Eng. 2017, 5, 9568–9585. [Google Scholar] [CrossRef]
- Yue, X.; Wang, H.; Wang, S.; Zhang, F.; Zhang, R. In-plane defects produced by ball-milling of expanded graphite. J. Alloys Compd. 2010, 505, 286–290. [Google Scholar] [CrossRef]
- Yuan, R.; Dong, Y.; Hou, R.; Shang, L.; Zhang, J.; Zhang, S.; Chen, X.; Song, H. Structural transformation of porous and disordered carbon during ball-milling. Chem. Eng. J. 2023, 454, 140418. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, S.; Du, X.; Hong, S.; Zhao, S.; Chen, Y.; Chen, X.; Song, H. Boosting the Electrical Double-Layer Capacitance of Graphene by Self-Doped Defects Through Ball-Milling. Adv. Funct. Mater. 2019, 29, 1901127. [Google Scholar] [CrossRef]
- Albaaji, A.J.; Castle, E.G.; Reece, M.J.; Hall, J.P.; Evans, S.L. Effect of ball-milling time on mechanical and magnetic properties of carbon nanotube reinforced FeCo alloy composites. Mater. Des. 2017, 122, 296–306. [Google Scholar] [CrossRef]
- Dong, Y.; Lin, X.; Wang, D.; Yuan, R.; Zhang, S.; Chen, X.; Bulusheva, L.G.; Okotrub, A.V.; Song, H. Modulating the defects of graphene blocks by ball-milling for ultrahigh gravimetric and volumetric performance and fast sodium storage. Energy Storage Mater. 2020, 30, 287–295. [Google Scholar] [CrossRef]
- Lai, C.C.; Lo, C.T. Plasma oxidation of electrospun carbon nanofibers as supercapacitor electrodes. RSC Adv. 2015, 5, 38868–38872. [Google Scholar] [CrossRef]
- Yan, X.C.; Jia, Y.; Zhuang, L.Z.; Zhang, L.Z.; Wang, K.; Yao, X.D. Defective Carbons Derived from Macadamia Nut Shell Biomass for Efficient Oxygen Reduction and Supercapacitors. Chem. Soc. Rev. 2018, 5, 1874–1879. [Google Scholar] [CrossRef]
- Guan, L.; Zhu, Y.F.; Wan, Y.; Zhang, M.D.; Li, Q.; Teng, X.L.; Zhang, Y.L.; Yang, H.; Zhang, Y.; Hu, H.; et al. Strong Interaction Between Redox Mediators and Defect-Rich Carbons Enabling Simultaneously Boosted Voltage Windows and Capacitance for Aqueous Supercapacitors. Energy Environ. Mater. 2024, 7, e12658. [Google Scholar] [CrossRef]
- Wang, Y.B.; Bai, X.; Wang, W.W.; Lu, Y.; Zhang, F.; Zhai, B.; Wang, X.Y.; Song, Y. Ball milling-assisted synthesis and electrochemical performance of porous carbon with controlled morphology and graphitization degree for supercapacitors. J. Energy Stroage 2021, 38, 102496. [Google Scholar] [CrossRef]
- Liu, D.; Ni, K.; Ye, J.; Xie, J.; Zhu, Y.; Song, L. Tailoring the Structure of Carbon Nanomaterials Toward High-End Energy Applications. Adv. Mater. 2018, 30, e1802104. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tao, L.; Xie, C.; Wang, D.; Zou, Y.; Chen, R.; Wang, Y.; Jia, C.; Wang, S. Defect Engineering on Electrode Materials for Rechargeable Batteries. Adv. Mater. 2020, 32, e1905923. [Google Scholar] [CrossRef]
- Luo, X.; Zheng, H.; Lai, W.; Yuan, P.; Li, S.; Li, D.; Chen, Y. Defect Engineering of Carbons for Energy Conversion and Storage Applications. Energy Environ. Mater. 2023, 6, e12402. [Google Scholar] [CrossRef]
- Wang, J.; Shi, H.; Wang, W.; Xu, Z.; Hong, C.; Xue, Y.; Tian, F. Defect engineering of graphynes for energy storage and conversion. Chem. Eng. J. 2022, 432, 133617. [Google Scholar] [CrossRef]
- Kim, J.-H.; Sharma, A.K.; Lee, Y.-S. Synthesis of polypyrrole and carbon nano-fiber composite for the electrode of electrochemical capacitors. Mater. Lett. 2006, 60, 1697–1701. [Google Scholar] [CrossRef]
- Kim, T.; Lim, S.; Kwon, K.; Hong, S.-H.; Qiao, W.; Rhee, C.K.; Yoon, S.-H.; Mochida, I. Electrochemical Capacitances of Well-Defined Carbon Surfaces. Langmuir 2006, 22, 9086–9088. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Han, Y.; Kong, X.; Deng, X.; Park, H.J.; Guo, Y.; Jin, S.; Qi, Z.; Lee, Z.; Qiao, Z.; et al. The Origin of Improved Electrical Double-Layer Capacitance by Inclusion of Topological Defects and Dopants in Graphene for Supercapacitors. Angew. Chem. Int. Ed. 2016, 55, 13822–13827. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Peng, H.; Liu, R.; Mo, Y.; Cao, B.; Lai, W.; Li, X.; Pan, L.; Chen, Y. Quantitative assessment of basal-, edge- and defect-surfaces of carbonaceous materials and their influence on electric double-layer capacitance. J. Power Sources 2020, 457, 228022. [Google Scholar] [CrossRef]
- Singal, S.; Joshi, A.; Tomar, A.K.; Sahu, V.; Singh, G.; Sharma, R.K. Vacancies and edges: Enhancing supercapacitive performance metrics of electrode materials. J. Energy Storage 2020, 31, 101614. [Google Scholar] [CrossRef]
- Li, J.; Zhang, W.; Zhang, X.; Huo, L.; Liang, J.; Wu, L.; Liu, Y.; Gao, J.; Pang, H.; Xue, H. Copolymer derived micro/meso-porous carbon nanofibers with vacancy-type defects for high-performance supercapacitors. J. Mater. Chem. A 2020, 8, 2463–2471. [Google Scholar] [CrossRef]
- Yuan, W.; Zhou, Y.; Li, Y.; Li, C.; Peng, H.; Zhang, J.; Liu, Z.; Dai, L.; Shi, G. The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Sci. Rep. 2013, 3, 2248. [Google Scholar] [CrossRef]
- Péan, C.; Merlet, C.; Rotenberg, B.; Madden, P.A.; Taberna, P.-L.; Daffos, B.; Salanne, M.; Simon, P. On the Dynamics of Charging in Nanoporous Carbon-Based Supercapacitors. ACS Nano 2014, 8, 1576–1583. [Google Scholar] [CrossRef] [PubMed]
- Rozada, R.; Solís-Fernández, P.; Paredes, J.I.; Martínez-Alonso, A.; Ago, H.; Tascón, J.M.D. Controlled generation of atomic vacancies in chemical vapor deposited graphene by microwave oxygen plasma. Carbon 2014, 79, 664–669. [Google Scholar] [CrossRef]
- Lu, W.; Yan, L.; Ye, W.; Ning, J.; Zhong, Y.; Hu, Y. Defect engineering of electrode materials towards superior reaction kinetics for high-performance supercapacitors. J. Mater. Chem. A 2022, 10, 15267–15296. [Google Scholar] [CrossRef]
- Zhang, Y.; Wan, Q.; Yang, N. Recent Advances of Porous Graphene: Synthesis, Functionalization, and Electrochemical Applications. Small 2019, 15, 1903780. [Google Scholar] [CrossRef]
- Baig, M.M.; Khan, M.A.; Gul, I.H.; Rehman, S.U.; Shahid, M.; Javaid, S.; Baig, S.M. A Review of Advanced Electrode Materials for Supercapacitors: Challenges and Opportunities. J. Electron. Mater. 2023, 52, 5775–5794. [Google Scholar] [CrossRef]
- Pattananuwat, P.; Thammasaroj, P.; Nuanwat, W.; Qin, J.; Potiyaraj, P. One-pot method to synthesis polyaniline wrapped graphene aerogel/silver nanoparticle composites for solid-state supercapacitor devices. Mater. Lett. 2018, 217, 104–108. [Google Scholar] [CrossRef]
- Zaulkiflee, N.D.; Ahmad, A.L.; Che Lah, N.F.; Low, S.C.; Norikazu, N. Collation of PANI as electrode material for supercapacitor: Effect of different substrate and its performances. J. Mater. Sci. Mater. Electron. 2023, 34, 1013. [Google Scholar] [CrossRef]
- Zhou, Y.; Cheng, X.; Tynan, B.; Sha, Z.; Huang, F.; Islam, M.S.; Zhang, J.; Rider, A.N.; Dai, L.; Chu, D.; et al. High-performance hierarchical MnO2/CNT electrode for multifunctional supercapacitors. Carbon 2021, 184, 504–513. [Google Scholar] [CrossRef]
- Chou, J.-C.; Chen, Y.-L.; Yang, M.-H.; Chen, Y.-Z.; Lai, C.-C.; Chiu, H.-T.; Lee, C.-Y.; Chueh, Y.-L.; Gan, J.-Y. RuO2/MnO2 core–shell nanorods for supercapacitors. J. Mater. Chem. A 2013, 1, 8753–8758. [Google Scholar] [CrossRef]
- Mehdi, R.; Khoja, A.H.; Naqvi, S.R.; Gao, N.; Amin, N.A.S. A Review on Production and Surface Modifications of Biochar Materials via Biomass Pyrolysis Process for Supercapacitor Applications. Catalysts 2022, 12, 798. [Google Scholar] [CrossRef]
- Li, Y.; Cao, R.; Song, J.; Liang, L.; Zhai, T.; Xia, H. Recent advances in coupling carbon-based electrode—Redox electrolyte system. Mater. Res. Bull. 2021, 139, 111249. [Google Scholar] [CrossRef]
- Tynan, B.; Zhou, Y.; Brown, S.A.; Dai, L.; Rider, A.N.; Wang, C.H. Structural supercapacitor electrodes for energy storage by electroless deposition of MnO2 on carbon nanotube mats. Compos. Sci. Technol. 2023, 238, 110016. [Google Scholar] [CrossRef]
- Peçenek, H.; Dokan, F.K.; Onses, M.S.; Yılmaz, E.; Sahmetlioglu, E. Outstanding supercapacitor performance with intertwined flower-like NiO/MnO2/CNT electrodes. Mater. Res. Bull. 2022, 149, 111745. [Google Scholar] [CrossRef]
- Yogeswari, B.; Khan, I.; Kumar, M.S.; Vijayanandam, N.; Devarani, P.A.; Anandaram, H.; Chaturvedi, A.; Misganaw, W.; Chelladurai, S.J.S. Role of Carbon-Based Nanomaterials in Enhancing the Performance of Energy Storage Devices: Design Small and Store Big. J. Nanomater. 2022, 2022, 4949916. [Google Scholar] [CrossRef]
- Fan, L.-Z.; Qiao, S.; Song, W.; Wu, M.; He, X.; Qu, X. Effects of the functional groups on the electrochemical properties of ordered porous carbon for supercapacitors. Electrochim. Acta 2013, 105, 299–304. [Google Scholar] [CrossRef]
- Jeon, I.-Y.; Shin, Y.-R.; Sohn, G.-J.; Choi, H.-J.; Bae, S.-Y.; Mahmood, J.; Jung, S.-M.; Seo, J.-M.; Kim, M.-J.; Wook Chang, D.; et al. Edge-carboxylated graphene nanosheets via ball milling. Proc. Natl. Acad. Sci. USA 2012, 109, 5588–5593. [Google Scholar] [CrossRef] [PubMed]
Electrode Material | Microstructural Characteristics | Preparation Methods | Electrochemical Performance Advantages | Cost and Availability | Application Examples or Research Cases | Ref. |
---|---|---|---|---|---|---|
Activated carbon | Abundant pores, high specific surface area. | Physical/chemical activation. | Many ion adsorption sites for double-layer capacitance. | Low cost, widely available, commercialized. | Small electronic device power storage. | [35,36] |
Graphene | Two-dimensional single/multi-layer of carbon atoms, high conductivity. | Mechanical exfoliation, SiC decomposition, CVD, electrochemical reduction. | Good conductivity, large area for charge/ion transfer. | High cost, challenging to scale up. | High-performance supercapacitor research. | [41,42] |
Carbon nanotube | Tubular (single/multi-walled), good conductivity. | CVD, arc discharge, laser ablation. | Unique structure for ion diffusion and charge transfer. | Complex prep, high cost, specific apps. | High-power density supercapacitors. | [38,39] |
Carbon aerogel | Three-dimensional porous network, large surface area, low density. | Sol-gel with drying techniques. | Good for ion diffusion/storage and charge transfer. | Complex and costly, high-end potential. | Aerospace power systems. | [45,46] |
Carbon fiber | Fibrous, high strength/modulus, conductive. | Organic fiber carbonization. | High strength and conductivity for stability. | Cost varies, used at the high end. | Wearable/flexible electronics. | [47,48] |
Comparison Aspect | Physical Activation | Chemical Activation | Template Method | In-Situ Template Method |
---|---|---|---|---|
Activation principle | Carbon materials are activated by high-temperature gases (e.g., CO2, steam), which react with the carbon material to remove part of the carbon and create pores. | Carbon precursor is impregnated with chemical activating agents (e.g., KOH, H3PO4), followed by carbonization to form pores. | External templates (e.g., ZnO, SiO2) are used during carbonization to create pore structures, with the template removed later via dissolution or other methods. | In-situ templates are used during the synthesis, where the template reacts with the carbon source to form pore structures, and is removed post-synthesis. |
Pore structure control | Primarily forms micropores, with some mesopores; limited control over pore size distribution. | Provides better control over pore structure, enabling the formation of micropores, mesopores, and macropores. | Allows precise control over pore size and shape, often creating ordered or hierarchical pore structures. | Capable of creating complex hierarchical pore structures with higher surface area and controlled pore distribution. |
Impact on supercapacitor performance | Enhances specific capacitance and conductivity, but with limited control over pore size. | Achieves higher specific surface area and better pore structure control, improving capacitance and cycling stability. | Improves electrochemical performance with well-defined pore structures and high surface area, enhancing energy and power density. | Enables precise control over hierarchical pore structures, further enhancing capacitance, rate capability, and stability. |
Advantages | Simple to operate, low cost, suitable for large-scale production, applicable to various feedstocks. | Adjustable pore structure, capable of achieving higher surface area and better electrochemical performance, versatile. | Provides precise pore structure control, yielding ordered, porous carbon materials that improve electrochemical performance. | Capable of creating complex hierarchical structures, offering broader pore control, suitable for high-performance energy storage applications. |
Disadvantages | Limited control over pore structure, which may lead to lower specific capacitance and energy density. | Process is somewhat more complex, relying on chemical agents, and may pose environmental pollution risks. | Requires template removal, making the process more complex; template material choice and removal can affect product purity. | Synthesis process is more complex, cost is higher, and template removal may result in material loss or contamination. |
Example research work | [51,79] | [64,65] | [81,82] | [89,90] |
Heteroatoms | Doping Content (%) | Specific Surface Area (m2 g−1) | Capacitance (F g−1) | Scan Rate (A g−1) | Ref. |
---|---|---|---|---|---|
N | 4.12 | 2450 | 325 | 1 | [129] |
N | 4.5 | 1012 | 245 | 0.5 | [130] |
N | 4.58 | 397 | 203 | 1 | [131] |
N | 4.15 | 1633 | 330 | 0.5 | [132] |
P | 4.1 | 756 | 253 | 1 | [133] |
P | 0.74 | 1432 | 966 | 1 | [134] |
P | - | 1281 | 292 | 0.1 | [135] |
S | 25 | 1952 | 325 | 0.125 | [136] |
B | 4 | 1503 | 285 | 1 | [137] |
B | 3.21 | 315 | 307 | 0.5 | [138] |
O | 14.71 | 936 | 197 | 1 | [139] |
O | 16.5 | 2866 | 216 | 0.5 | [140] |
N,O | 2.3/16.34 | 2027 | 295 | 1 | [141] |
N,O | 2.25/14.09 | 2508 | 560 | 0.5 | [142] |
N,P | 3.1/0.62 | 2245 | 321 | 1 | [143] |
N,S | 1.8/1.5 | 2690 | 328 | 1 | [144] |
Defect Formation Strategy | About the Strategy | Advantages | Disadvantages | Defect Type | Capacitance | Ref. |
---|---|---|---|---|---|---|
Plasma treatment | High-energy plasma is used to interact with carbon materials, creating defects by knocking out carbon atoms and introducing interstitials or topological distortions. | Precise control over defect types and density; Eco-friendly process; Can modify surface chemistry without altering bulk properties | Expensive; Complex equipment; Limited scalability for industrial use | Vacancies, edge defects, topological defects | 377 F g−1 (2 mV s−1) | [171] |
1.7 mF cm−2 (0.1 V s−1) | [157] | |||||
Nitrogen removal strategy | Thermal treatment of nitrogen-doped carbon materials in inert or controlled atmospheres removes nitrogen atoms, creating vacancies and topological defects in the carbon lattice. | High defect density; Precise control over defect concentration; No need for additional doping | Requires high-temperature treatment; Costly process | Vacancies, topological defects | 155 F g−1 (1 A g−1) | [172] |
182 F g−1 (3 A g−1) | [173] | |||||
Ball milling | Mechanical grinding using high-energy ball mills introduces defects by applying mechanical stress, fracturing and deforming the carbon structure. | Simple and cost-effective; Can create various defects; Increases surface area and active sites for reactions | Process control challenges; Mechanical stress may damage material | Vacancies, edge defects, topological defects | 235 F g−1 (1 A g−1) | [168] |
168 F g−1 (1 A g−1) | [174] |
Electrode Material | Modification Strategy | Specific Capacitance (F g−1) | Scan Rate | Energy Density (Wh kg−1) | Ref. |
---|---|---|---|---|---|
PANi/rGA/AgNPs | Coating with conductive polymer polyaniline on reduced graphene aerogel and silver nanoparticles. | 365.14 | 0.5 A g−1 | 116 | [191] |
PANI-coated carbon felt | One-step electrochemical polymerization method to coat polyaniline on carbon felt. | 251.6 | 20 mV s−1 | - | [192] |
MnO2-coated CNTs | Applying a thin layer of MnO2 on carbon nanotubes. | 192 | 10 mV s−1 | 0.078 | [197] |
MnO2/NiO/CNTs | Utilizing a composite material of MnO2, NiO, and carbon nanotubes. | 1320 | 1 A g−1 | 0.15 | [198] |
Oxidized activated carbon (OAC) | Introducing oxygen-containing functional groups C-O and COOH through thermal treatment strategies | 264 | 0.5 A g−1 | - | [61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, L.; Li, D.; Ji, S.; Wei, X.; Meng, F. Structural Regulation and Performance Enhancement of Carbon-Based Supercapacitors: Insights into Electrode Material Engineering. Materials 2025, 18, 456. https://doi.org/10.3390/ma18020456
Guan L, Li D, Ji S, Wei X, Meng F. Structural Regulation and Performance Enhancement of Carbon-Based Supercapacitors: Insights into Electrode Material Engineering. Materials. 2025; 18(2):456. https://doi.org/10.3390/ma18020456
Chicago/Turabian StyleGuan, Lu, Dajin Li, Shanshan Ji, Xiuzhi Wei, and Fanxiao Meng. 2025. "Structural Regulation and Performance Enhancement of Carbon-Based Supercapacitors: Insights into Electrode Material Engineering" Materials 18, no. 2: 456. https://doi.org/10.3390/ma18020456
APA StyleGuan, L., Li, D., Ji, S., Wei, X., & Meng, F. (2025). Structural Regulation and Performance Enhancement of Carbon-Based Supercapacitors: Insights into Electrode Material Engineering. Materials, 18(2), 456. https://doi.org/10.3390/ma18020456