From Powders to Performance—A Comprehensive Study of Two Advanced Cutting Tool Materials Sintered with Pressure Assisted Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Superhard Composite—BNT
2.2. Carbide-Oxide Ceramic Composite—AZW
2.3. Samples Preparation
2.4. Testing Methods
3. Results and Discussion
3.1. Density and Young’s Modulus
3.2. Hardness
3.3. Microstructure and Phase Composition of BNT Superhard Composites
3.4. Microstructure and Phase Composition of AZW Ceramic Composites
3.5. Cutting Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Altin, A.; Nalbant, M.; Taskesen, A. The Effects of Cutting Speed on Tool Wear and Tool Life When Machining Inconel 718 with Ceramic Tools. Mater. Des. 2007, 28, 2518–2522. [Google Scholar] [CrossRef]
- Bushlya, V.; Lenrick, F.; Bjerke, A.; Aboulfadl, H.; Thuvander, M.; Ståhl, J.E.; M’Saoubi, R. Tool Wear Mechanisms of PcBN in Machining Inconel 718: Analysis across Multiple Length Scale. CIRP Ann. 2021, 70, 73–78. [Google Scholar] [CrossRef]
- Chawla, K.K. Ceramic Matrix Composites; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Tai, W.P.; Watanabe, T. Fabrication and Mechanical Properties of Al2O3-WC-Co Composites by Vacuum Hot Pressing. J. Am. Ceram. Soc. 1998, 81, 1673–1676. [Google Scholar] [CrossRef]
- Zheng, D.; Li, X.; Ai, X.; Yang, C.; Li, Y. Bulk WC–Al2O3 Composites Prepared by Spark Plasma Sintering. Int. J. Refract. Met. Hard Mater. 2012, 30, 51–56. [Google Scholar] [CrossRef]
- Huang, S.; Vanmeensel, K.; Van der Biest, O.; Vleugels, J. Pulsed Electric Current Sintering and Characterization of Ultrafine Al2O3–WC Composites. Mater. Sci. Eng. A 2010, 527, 584–589. [Google Scholar] [CrossRef]
- Zhao, J.; Yuan, X.; Zhou, Y. Processing and Characterization of an Al2O3/WC/TiC Micro-Nano-Composite Ceramic Tool Material. Mater. Sci. Eng. A 2010, 527, 1844–1849. [Google Scholar] [CrossRef]
- Garnier, V.; Fantozzi, G.; Nguyen, D.; Dubois, J.; Thollet, G. Influence of SiC Whisker Morphology and Nature of SiC/Al2O3 Interface on Thermomechanical Properties of SiC Reinforced Al2O3 Composites. J. Eur. Ceram. Soc. 2005, 25, 3485–3493. [Google Scholar] [CrossRef]
- Lee, D.-Y.; Yoon, D.-H. Properties of Alumina Matrix Composites Reinforced with SiC Whisker and Carbon Nanotubes. Ceram. Int. 2014, 40, 14375–14383. [Google Scholar] [CrossRef]
- Landfried, R.; Kern, F.; Burger, W.; Leonhardt, W.; Gadow, R. Development of Electrical Discharge Machinable ZTA Ceramics with 24 Vol% of TiC,TiN,TiCN,TiB2 and WC as Electrically Conductive Phase. Int. J. Appl. Ceram. Technol. 2013, 10, 509–518. [Google Scholar] [CrossRef]
- Gu, T.; Lu, H. Microwave Sintering of Al2O3-ZrO2-WC-Co Cermets. J. Wuhan Univ. Technol. Sci. Ed. 2011, 26, 289–291. [Google Scholar] [CrossRef]
- Xia, X.; Li, X.; Li, J.; Zheng, D. Microstructure and Characterization of WC-2.8 Wt% Al2O3-6.8 Wt% ZrO2 Composites Produced by Spark Plasma Sintering. Ceram. Int. 2016, 42, 14182–14188. [Google Scholar] [CrossRef]
- Nishi, T.; Matsunaga, K.; Mitsuoka, T.; Okimura, Y.; Katsu, Y. Advanced Superhard Composite Materials with Extremely Improved Mechanical Strength by Interfacial Segregation of Dilute Dopants. Sci. Rep. 2020, 10, 21008. [Google Scholar] [CrossRef]
- Pędzich, Z. Fracture of Oxide Matrix Composites with Different Phase Arrangement. Key Eng. Mater. 2009, 409, 244–251. [Google Scholar] [CrossRef]
- Pędzich, Z.; Grabowski, G.; Maziarz, W. Wybrane Kompozyty Ceramiczne o Fazach Ciągłych–Analiza Stanu Naprężeń. Mater. Ceram. Mater. 2008, 258–261. [Google Scholar]
- Kulkarni, V.S.; Shaw, C. Cubic Boron Nitride Competing with Diamond as a Superhard Engineering Material—An Overview. In Essential Chemistry for Formulators of Semisolid and Liquid Dosages; Elsevier: Amsterdam, The Netherlands, 2013; pp. 132–136. [Google Scholar] [CrossRef]
- Xie, H.; Deng, F.; Wang, H.; Liu, J.; Han, S.; Feng, F. Study of the Proportioning Design Method and Mechanical Properties of a CBN–TiN Composite. Int. J. Refract. Met. Hard Mater. 2020, 89, 105209. [Google Scholar] [CrossRef]
- Chiou, S.-Y.; Ou, S.-F.; Jang, Y.-G.; Ou, K.-L. Research on CBN/TiC Composites Part1: Effects of the CBN Content and Sintering Process on the Hardness and Transverse Rupture Strength. Ceram. Int. 2013, 39, 7205–7210. [Google Scholar] [CrossRef]
- Shokrani, A.; Dhokia, V.; Newman, S.T. Environmentally Conscious Machining of Difficult-to-Machine Materials with Regard to Cutting Fluids. Int. J. Mach. Tools Manuf. 2012, 57, 83–101. [Google Scholar] [CrossRef]
- Persson, H.; Bushlya, V.; Franca, L.; Zhou, J.; Ståhl, J.E.; Lenrick, F. Performance and Wear Mechanisms of Different PcBN Tools When Machining Superalloy AD730. Ceram. Int. 2022, 48, 22733–22742. [Google Scholar] [CrossRef]
- Costes, J.P.; Guillet, Y.; Poulachon, G.; Dessoly, M. Tool-Life and Wear Mechanisms of CBN Tools in Machining of Inconel 718. Int. J. Mach. Tools Manuf. 2007, 47, 1081–1087. [Google Scholar] [CrossRef]
- Pazhouhanfar, Y.; Sabahi Namini, A.; Delbari, S.A.; Nguyen, T.P.; Van Le, Q.; Shaddel, S.; Pazhouhanfar, M.; Shokouhimehr, M.; Shahedi Asl, M. Microstructural and Mechanical Characterization of Spark Plasma Sintered TiC Ceramics with TiN Additive. Ceram. Int. 2020, 46, 18924–18932. [Google Scholar] [CrossRef]
- Jaworska, L.; Szutkowska, M.; Morgiel, J.; Stobierski, L.; Lis, J. Ti3SiC2 as a Bonding Phase in Diamond Composites. J. Mater. Sci. Lett. 2001, 20, 1783–1786. [Google Scholar] [CrossRef]
- Ji, H.; Liang, Y.; Jiang, Z.; Li, Z.; Zhu, Y. Controllable HTHP Sintering and Property of CBN/Diamond Composites Containing Ti3SiC2. Ceram. Int. 2020, 46, 13807–13812. [Google Scholar] [CrossRef]
- Lv, X.; Jian, Q.; Li, Z.; Sun, K.; Ji, H.; Zhu, Y. Effect of Controllable Decomposition of MAX Phase (Ti3SiC2) on Mechanical Properties of Rapidly Sintered Polycrystalline Diamond by HPHT. Ceram. Int. 2019, 45, 16564–16568. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, J.; Xi, X.; Luo, W.; Zhou, J. Molten Salt Dynamic Sealing Synthesis of MAX Phases (Ti3AlC2, Ti3SiC2 et al.) Powder in Air. Ceram. Int. 2023, 49, 168–178. [Google Scholar] [CrossRef]
- Perevislov, S.N.; Sokolova, T.V.; Stolyarova, V.L. The Ti3SiC2 Max Phases as Promising Materials for High Temperature Applications: Formation under Various Synthesis Conditions. Mater. Chem. Phys. 2021, 267, 124625. [Google Scholar] [CrossRef]
- Prikhna, A.I. High-Pressure Apparatuses in Production of Synthetic Diamonds. J. Superhard Mater. 2008, 30, 1–15. [Google Scholar] [CrossRef]
- Khvostantsev, L.G.; Slesarev, V.N.; Brazhkin, V.V. Toroid Type High-Pressure Device: History and Prospects. High Press. Res. 2004, 24, 371–383. [Google Scholar] [CrossRef]
- Laszkiewicz-Łukasik, J.; Putyra, P.; Klimczyk, P.; Podsiadło, M.; Bednarczyk, K. Spark Plasma Sintering/Field Assisted Sintering Technique as a Universal Method for the Synthesis, Densification and Bonding Processes for Metal, Ceramic and Composite Materials. J. Appl. Mater. Eng. 2021, 60, 53–69. [Google Scholar] [CrossRef]
- PN-ISO 3685:1996; Tool-Life Testing with Single-Point Turning Tools. Polski Komitet Normalizacyjny: Warsaw, Poland, 1996.
- Khan, S.A.; Soo, S.L.; Aspinwall, D.K.; Sage, C.; Harden, P.; Fleming, M.; White, A.; M’Saoubi, R. Tool Wear/Life Evaluation When Finish Turning Inconel 718 Using PCBN Tooling. Procedia CIRP 2012, 1, 283–288. [Google Scholar] [CrossRef]
cBN | TiN | Ti3SiC2 | Al2O3 | ZrO2 | WC | |
---|---|---|---|---|---|---|
Apparent density, g/cm3 | 3.48 | 5.39 | 4.52 | 3.98 | 6.05 | 15.7 |
Young Modulus, GPa | 909 | 465 | 325 | 400 | 219 | 705 |
Sintering Temperature, °C | Density, g/cm3 | Relative Density, % | Young’s Modulus, GPa |
---|---|---|---|
1600 | 3.98 ± 0.02 | 99.1 | 508 ± 8 |
1700 | 4.00 ± 0.02 | 99.5 | 548 ± 9 |
1800 | 4.02 ± 0.02 | 100 | 557 ± 9 |
1900 | 4.02 ± 0.02 | 100 | 579 ± 9 |
2000 | 4.03 ± 0.02 | 99.8 | 569 ± 10 |
2100 | 4.03 ± 0.02 | 100 | 582 ± 11 |
Sintering Temperature, °C | Density, g/cm3 | Relative Density, % | Young’s Modulus, GPa |
---|---|---|---|
1300 | 7.22 ± 0.02 | 78.8 | – * |
1350 | 8.10 ± 0.02 | 88.4 | 333 ± 6 |
1400 | 8.68 ± 0.02 | 94.8 | 397 ± 3 |
1450 | 8.96 ± 0.02 | 97.8 | 446 ± 5 |
1500 | 9.05 ± 0.02 | 98.8 | 457 ± 7 |
1550 | 9.17 ± 0.02 | 100 | 469 ± 7 |
1600 | 9.17 ± 0.02 | 100 | 471 ± 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Momot, K.; Klimczyk, P.; Leszczyńska-Madej, B.; Podsiadło, M.; Rumiantseva, Y.; Gubernat, A. From Powders to Performance—A Comprehensive Study of Two Advanced Cutting Tool Materials Sintered with Pressure Assisted Methods. Materials 2025, 18, 461. https://doi.org/10.3390/ma18020461
Momot K, Klimczyk P, Leszczyńska-Madej B, Podsiadło M, Rumiantseva Y, Gubernat A. From Powders to Performance—A Comprehensive Study of Two Advanced Cutting Tool Materials Sintered with Pressure Assisted Methods. Materials. 2025; 18(2):461. https://doi.org/10.3390/ma18020461
Chicago/Turabian StyleMomot, Kinga, Piotr Klimczyk, Beata Leszczyńska-Madej, Marcin Podsiadło, Yuliia Rumiantseva, and Agnieszka Gubernat. 2025. "From Powders to Performance—A Comprehensive Study of Two Advanced Cutting Tool Materials Sintered with Pressure Assisted Methods" Materials 18, no. 2: 461. https://doi.org/10.3390/ma18020461
APA StyleMomot, K., Klimczyk, P., Leszczyńska-Madej, B., Podsiadło, M., Rumiantseva, Y., & Gubernat, A. (2025). From Powders to Performance—A Comprehensive Study of Two Advanced Cutting Tool Materials Sintered with Pressure Assisted Methods. Materials, 18(2), 461. https://doi.org/10.3390/ma18020461