Comparison Between Crystalline and Amorphous Silicon as Anodes for Lithium Ion Batteries: Electrochemical Performance from Practical Cells and Lithiation Behavior from Molecular Dynamics Simulations
Abstract
:1. Introduction
2. Experimental and Computational Details
3. Results and Discussion
3.1. Structural Analysis of Silicon Particles
3.2. Electrochemical Performance
3.3. Silicon Nanofilm Volume Expansion Simulation
3.4. Effects of Bond Strength and Stress
3.5. Comparison of DLP Cell and Simulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dey, A.N. Electrochemical Alloying of Lithium in Organic Electrolytes. J. Electrochem. Soc. 1971, 118, 1547–1549. [Google Scholar] [CrossRef]
- Sharma, R.A.; Seefurth, R.N. Thermodynamic Properties of the Lithium-Silicon System. J. Electrochem. Soc. 1976, 123, 1763–1768. [Google Scholar] [CrossRef]
- Wang, G.X.; Ahn, J.H.; Yao, J.; Bewlay, S.; Liu, H.K. Nanostructured Si-C Composite Anodes for Lithium-Ion Batteries. Electrochem. Commun. 2004, 6, 689–692. [Google Scholar] [CrossRef]
- Holzapfel, M.; Buqa, H.; Scheifele, W.; Novák, P.; Petrat, F.-M. A New Type of Nano-Sized Silicon/Carbon Composite Electrode for Reversible Lithium Insertion. Chem. Commun. 2005, 12, 1566–1568. [Google Scholar] [CrossRef]
- Kim, I.-S.; Kumta, P.N. High Capacity Si/C Nanocomposite Anodes for Li-Ion Batteries. J. Power Sources 2004, 136, 145–149. [Google Scholar] [CrossRef]
- Ng, S.-H.; Wang, J.; Wexler, D.; Konstantinov, K.; Guo, Z.-P.; Liu, H.-K. Highly Reversible Lithium Storage in Spheroidal Carbon-Coated Silicon Nanocomposites as Anodes for Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2006, 45, 6896–6899. [Google Scholar] [CrossRef]
- Lee, J.K.; Smith, K.B.; Hayner, C.M.; Kung, H.H. Silicon Nanoparticles-Graphene Paper Composites for Li Ion Battery Anodes. Chem. Commun. 2010, 46, 2025–2027. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, C. Mesoporous Carbon/Silicon Composite Anodes with Enhanced Performance for Lithium-Ion Batteries. J. Mater. Chem. A 2014, 2, 9751–9757. [Google Scholar] [CrossRef]
- Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-Performance Lithium-Ion Anodes Using a Hierarchical Bottom-Up Approach. Nat. Mater. 2010, 9, 353–358. [Google Scholar] [CrossRef]
- Wem, Y.; Zhu, Y.; Langrock, A.; Manivannan, A.; Ehrman, S.H.; Wang, C. Graphene-Bonded and -Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes. Small 2013, 9, 2810–2816. [Google Scholar]
- Ko, M.; Chae, S.; Jeong, S.; Oh, P.; Cho, J. Elastic a-Silicon Nanoparticle Backboned Graphene Hybrid as a Self-Compacting Anode for High-Rate Lithium Ion Batteries. ACS Nano 2014, 8, 8591–8599. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Shen, L.; Xu, G.; Nie, P.; Wang, J.; Dou, H.; Zhang, X. Rational Design of Void-Involved Si@TiO2 Nanospheres as High-Performance Anode Material for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2014, 6, 6497–6503. [Google Scholar] [CrossRef]
- Gao, B.; Sinha, S.; Fleming, L.; Zhou, O. Alloy Formation in Nanostructured Silicon. Adv. Mater. 2001, 13, 816–819. [Google Scholar] [CrossRef]
- Peng, K.; Jie, J.; Zhang, W.; Lee, S.-T. Silicon Nanowires for Rechargeable Lithium-Ion Battery Anodes. Appl. Phys. Lett. 2008, 93, 033105. [Google Scholar] [CrossRef]
- Jing, S.; Jiang, H.; Hu, Y.; Li, C. Directly Grown Si Nanowire Arrays on Cu Foam with a Coral-like Surface for Lithium-Ion Batteries. Nanoscale 2014, 6, 14441–14445. [Google Scholar] [CrossRef]
- Kohandehghan, A.; Cui, K.; Kupsta, M.; Memarzadeh, E.; Kalisvaart, P.; Mitlin, D. Nanometer-Scale Sn Coatings Improve the Performance of Silicon Nanowire LIB Anodes. J. Mater. Chem. A 2014, 2, 11261–11279. [Google Scholar] [CrossRef]
- Kohandehghan, A.; Kalisvaart, P.; Kupsta, M.; Zahiri, B.; Amirkhiz, B.S.; Li, Z.; Mmarzadeh, E.L.; Bendersky, L.A.; Mitlin, D. Magnesium and Magnesium-Silicide Coated Silicon Nanowire Composite Anodes for Lithium-Ion Batteries. J. Mater. Chem. A 2013, 1, 1600–1612. [Google Scholar] [CrossRef]
- Wen, Z.; Lu, G.; Mao, S.; Kim, H.; Cui, S.; Yu, K.; Huang, X.; Hurley, P.T.; Mao, O.; Chen, J. Silicon Nanotube Anode for Lithium-Ion Batteries. Electrochem. Commun. 2013, 29, 67–70. [Google Scholar] [CrossRef]
- Yoo, J.-K.; Kim, J.; Jung, Y.S.; Kang, K. Scalable Fabrication of Silicon Nanotubes and Their Application to Energy Storage. Adv. Mater. 2012, 24, 5452–5456. [Google Scholar] [CrossRef]
- Hertzberg, B.; Alexeev, A.; Yushin, G. Deformation in Si-Li Anodes Upon Electrochemical Alloying in Nano-Confined Space. J. Am. Chem. Soc. 2010, 132, 8548–8549. [Google Scholar] [CrossRef]
- Lu, Z.; Zhu, J.; Sim, D.; Zhou, W.; Shi, W.; Hng, H.H.; Yan, Q. Synthesis of Ultrathin Silicon Nanosheets by Using Graphene Oxide as Template. Chem. Mater. 2011, 23, 5293–5295. [Google Scholar] [CrossRef]
- Yu, X.; Xue, F.; Huang, H.; Liu, C.; Yu, J.; Sun, Y.; Dong, X.; Cao, G.; Jung, Y. Synthesis and Electrochemcial Properties of Silicon Nanosheets by DC Arc Discharge for Lithium-Ion Batteries. Nanoscale 2014, 6, 6860–6865. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Y.; Ma, H.; Wang, Z.; Xu, X.; Huang, X. Solid Silicon Nanosheet Sandwiched by Self-Assembled Honeycomb Silicon Nanosheets Enabling Long Life at High Current Density for a Lithium-Ion Battery Anode. ACS Appl. Mater. Interfaces 2023, 15, 15409–15419. [Google Scholar] [CrossRef]
- Cho, J. Porous Si Anode Materials for Lithium Rechargeable Batteries. J. Mater. Chem. 2010, 20, 4009–4014. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, B.; Cao, F.; Chan, H.L.W.; Zhao, X.; Yuan, J. One-Pot Synthesis of Three-Dimensional Silver-Embedded Porous Silicon Micron particles for Lithium-Ion Batteries. J. Mater. Chem. 2011, 21, 17083–17086. [Google Scholar] [CrossRef]
- Bang, Y.M.; Kim, H.; Song, H.-K.; Cho, J.; Park, S. Scalable Approach to Multi-Dimensional Bulk Si Anodes via Metal-Assisted Chemical Etching. Energy Environ. Sci. 2011, 4, 5013–5019. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, C.; Hao, S.; Zhu, K.; Zhang, P. An Easy Way for Preparing High Performance Porous Silicon Powder by Acid Etching Al-Si Alloy Powder for Lithium Ion Battery. Electrochim. Acta 2014, 115, 393–398. [Google Scholar] [CrossRef]
- Cheng, Z.; Jiang, H.; Zhang, X.; Cheng, F.; Wu, M.; Zhang, H. Fundamental Understanding and Facing Challenges in Structural Design of Porous Si-Based Anodes for Lithium-Ion Batteries. Adv. Funct. Mater. 2023, 33, 2301109. [Google Scholar] [CrossRef]
- Sun, L.; Liu, Y.; Shao, R.; Wu, J.; Jiang, R.; Jin, Z. Recent Progress and Future Perspective on Practical Silicon Anode-Based Lithium Ion Batteries. Energy Storage Mater. 2022, 46, 482–502. [Google Scholar] [CrossRef]
- Wang, H.; Lu, S.-H.; Wang, X.; Xia, S.; Chew, H.B. A Review of the Multiscale Mechanics of Silicon Electrodes in High-Capacity Lithium-Ion Batteries. J. Phys. D Appl. Phys. 2022, 55, 063001. [Google Scholar] [CrossRef]
- Feng, K.; Li, M.; Liu, W.; Kashkooli, A.G.; Xiao, X.; Cai, M.; Chen, Z. Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Application. Small 2018, 14, 1702737. [Google Scholar] [CrossRef] [PubMed]
- McDowell, M.T.; Lee, S.W.; Nix, W.D.; Cui, Y. Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries. Adv. Mater. 2013, 25, 4966–4985. [Google Scholar] [CrossRef] [PubMed]
- Ozanam, F.; Rosso, M. Silicon as Anode Material for Li-Ion Batteries. Mater. Sci. Eng. B 2016, 213, 2–11. [Google Scholar] [CrossRef]
- Zuo, X.; Zhu, J.; Müller-Buschbaum, P.; Cheng, Y.-J. Silicon Based Lithium-Ion Battery Anodes: A Chronicle Perspective Review. Nano Energy 2017, 31, 113–143. [Google Scholar] [CrossRef]
- Naboka, O.; Yim, C.-H.; Abu-Lebdeh, Y. Practical Approach to Enhance Compatibility in Silicon/Graphite Composites to Enable High-Capacity Li-Ion Battery Anodes. ACS Omega 2021, 6, 2644–2654. [Google Scholar] [CrossRef]
- Wu, J.; Cao, Y.; Zhao, H.; Mao, J.; Guo, Z. The Critical Role of Carbon in Marrying Silicon and Graphite Anodes for High-Energy Lithium-Ion Batteries. Carbon Energy 2019, 1, 57–76. [Google Scholar] [CrossRef]
- Moyassari, E.; Roth, T.; Kücher, S.; Chang, C.-C.; Hou, S.-C.; Spingler, F.B.; Jossen, A. The Role of Silicon in Silicon-Graphite Composite Electrodes Regarding Specific Capacity, Cycle Stability, and Expansion. J. Electrochem. Soc. 2022, 169, 010504. [Google Scholar] [CrossRef]
- Liu, X.H.; Wang, J.W.; Huang, S.; Fan, F.; Huang, X.; Liu, Y.; Krylyuk, S.; Yoo, J.; Dayeh, S.A.; Davydov, A.V.; et al. In Situ Atomic-Scale Imaging of Electrochemical Lithiation in Silicon. Nat. Nanotechnol. 2012, 7, 749–756. [Google Scholar] [CrossRef]
- Liu, X.H.; Zheng, H.; Zhong, L.; Huang, S.; Karki, K.; Zhang, L.Q.; Liu, Y.; Kushima, A.; Liang, W.T.; Wang, J.W.; et al. Anisotropic Swelling and Fracture of Silicon Nanowires during Lithiation. Nano Lett. 2011, 11, 3312–3318. [Google Scholar] [CrossRef]
- Pharr, M.; Zhao, K.; Wang, X.; Suo, Z.; Vlassak, J.J. Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of Lithium-Ion Batteries. Nano Lett. 2012, 12, 5039–5047. [Google Scholar] [CrossRef]
- Lee, S.W.; McDowell, M.T.; Berla, L.A.; Nix, W.D.; Cui, Y. Fracture of Crystalline Silicon Nanopillars during Electrochemical Lithium Insertion. Proc. Natl. Acad. Sci. USA 2012, 109, 4080–4085. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.H.; Zhong, L.; Huang, S.; Mao, S.X.; Zhu, T.; Huang, J.Y. Size-Dependent Fracture of Silicon Nanoparticles During Lithiation. ACS Nano 2012, 6, 1522–1531. [Google Scholar] [CrossRef]
- Zhao, K.; Pharr, M.; Wan, Q.; Wang, W.L.; Kaxiras, E.; Vlassak, J.J.; Suo, Z. Concurrent Reaction and Plasticity during Initial Lithiation of Crystalline Silicon in Lithium-Ion Batteries. J. Electrochem. Soc. 2012, 159, A238–A243. [Google Scholar] [CrossRef]
- Wang, J.W.; He, Y.; Fan, F.; Liu, X.H.; Xia, S.; Liu, Y.; Harris, C.T.; Li, H.; Huang, J.Y.; Mao, S.X.; et al. Two-Phase Electrochemical Lithiation in Amorphous Silicon. Nano Lett. 2013, 13, 709–715. [Google Scholar] [CrossRef] [PubMed]
- McDowell, M.T.; Lee, S.W.; Harris, J.T.; Korgel, B.A.; Wang, C.; Nix, W.D.; Cui, Y. In Situ TEM of Two-Phase Lithiation of Amorphous Silicon Nanospheres. Nano Lett. 2013, 13, 758–764. [Google Scholar] [CrossRef]
- Uxa, D.; Jerliu, B.; Hüger, E.; Dörrer, L.; Horisberger, M.; Stahn, J.; Schmidt, H. On the Lithiation Mechanism of Amorphous Silicon Electrodes in Li-Ion Batteries. J. Phys. Chem. C 2019, 123, 22027–22039. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; In’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS—A Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Senftle, T.P.; Hong, S.; Islam, M.M.; Kylasa, S.B.; Zheng, Y.; Shin, Y.K.; Junkermeier, C.; Engel-Herbert, R.; Janik, M.J.; Aktulga, H.M.; et al. The ReaxFF Reactive Force-Field: Development, Applications and Future Directions. Npj Comput. Mater. 2016, 2, 15011. [Google Scholar] [CrossRef]
- Jung, H.; Lee, M.; Yeo, B.C.; Lee, K.-R.; Han, S.S. Atomistic Observation of the Lithiation and Delithiation Behaviors of Silicon Nanowires Using Reactive Molecular Dynamics Simulations. J. Phys. Chem. C 2015, 119, 3447–3455. [Google Scholar] [CrossRef]
- Chen, X.; Tan, B.; Liu, N.; Zhang, K. Reactive Force-Field Simulation and Experimental Validation of Cyclic Defects in Silicon Anodes for Lithium-Ion Batteries. Cell Rep. Phys. Sci. 2024, 5, 102148. [Google Scholar] [CrossRef]
- Olou’ou Guifo, S.B.; Mueller, J.E.; van Duin, D.; Talkhoncheh, M.K.; van Duin, A.C.T.; Henriques, D.; Markus, T. Development and Validation of a ReaxFF Reactive Force Field for Modeling Silicon-Carbon Composite Anode Materials in Lithium-Ion Batteries. J. Phys. Chem. C 2023, 127, 2818–2834. [Google Scholar] [CrossRef]
- Olou’ou Guifo, S.B.; Mueller, J.E.; Markus, T. Molecular Dynamics Simulations of Interfacial Lithium-Silicon Interdiffusion in Lithium-Ion-Battery Anodes. J. Phys. Chem. C 2024, 128, 4891–4904. [Google Scholar] [CrossRef]
- Ishimaru, M. Molecular-Dynamics Study on Atomistic Structures of Amorphous Silicon. J. Phys. Condens. Matter 2001, 13, 4181–4189. [Google Scholar] [CrossRef]
- Kang, H. Crystalline Silicon vs. Amorphous Silicon: The Significance of Structural Differences in Photovoltaic Applications. IOP Conf. Ser. Earth Environ. Sci. 2021, 726, 012001. [Google Scholar] [CrossRef]
- Nosé, S. A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical Dynamics: Equilibrium Phase-Space Distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef]
- Rappe, A.K.; Goddard III, W.A. Charge Equilibration for Molecular Dynamics Simulations. J. Phys. Chem. 1991, 95, 3358–3363. [Google Scholar] [CrossRef]
- Fuhs, W.; Korte, L.; Schmidt, M. Heterojunctions of Hydrogenated Amorphous Silicon and Monocrystalline Silicon. J. Optoelectron. Adv. Mater. 2006, 8, 1989–1995. [Google Scholar]
- Kalnaus, S.; Rhodes, K.; Daniel, C. A Study of Lithium Ion Intercalation Induced Fracture of Silicon Particles Used as Anode Material in Li-Ion Battery. J. Power Sources 2011, 196, 8116–8124. [Google Scholar] [CrossRef]
- Su, X.; Wu, Q.; Li, J.; Xiao, X.; Lott, A.; Lu, W.; Sheldon, B.W.; Wu, J. Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review. Adv. Energy Mater. 2014, 4, 1300882. [Google Scholar] [CrossRef]
- Chen, S.; Du, A.; Yan, C. Molecular Dynamic Investigation of the Structure and Stress in Crystalline and Amorphous Silicon during Lithiation. Comput. Mater. Sci. 2020, 183, 109811. [Google Scholar] [CrossRef]
- Pan, L.-Y.; Kuo, C.-L. Atomistic Study on the Origins of the Anisotropic Lithiation Behaviors of the Silicon Anode Using the Reactive Force Field Based Molecular Dynamics Simulations. Acta Materialia 2024, 265, 119610. [Google Scholar] [CrossRef]
- Wang, C.; Wen, J.; Luo, F.; Quan, B.; Li, H.; Wei, Y.; Gu, C.; Li, J. Anisotropic Expansion and Size-Dependent Fracture of Silicon Nanotubes during Lithiation. J. Mater. Chem. A 2019, 7, 15113–15122. [Google Scholar] [CrossRef]
- Limthongkul, P.; Jang, Y.-I.; Dudney, N.J.; Ching, Y.-M. Electrochemically-Driven Solid-State Amorphization in Lithium-Silicon Alloys and Implications for Lithium Storage. Acta Mater. 2003, 51, 1103–1113. [Google Scholar] [CrossRef]
- Graf, M.; Berg, C.; Bernhard, R.; Haufe, S.; Pfeiffer, J.; Gasteiger, H.A. Effect and Progress of the Amorphization Process for Microscale Silicon Particles under Partial Lithiations as Active Material in Lithium-Ion Batteries. J. Electrochem. Soc. 2022, 169, 020536. [Google Scholar] [CrossRef]
- Tritsaris, G.A.; Zhao, K.; Okeke, O.U.; Kaxiras, E. Diffusion of Lithium in Bulk Amorphous Silicon: A Theoretical Study. J. Phys. Chem. C 2012, 116, 22212–22216. [Google Scholar] [CrossRef]
- Ogata, K.; Salager, E.; Kerr, C.J.; Fraser, A.E.; Ducati, C.; Morris, A.J.; Hofmann, S.; Grey, C.P. Revealing Lithium-Silicide Phase Transformations in Nano-Structured Silicon-Based Lithium Ion Batteries via in situ NMR Spectroscopy. Nat. Commun. 2014, 5, 3217. [Google Scholar] [CrossRef]
- McDowell, M.T.; Ryu, I.; Lee, S.W.; Wang, C.; Nix, W.D.; Cui, Y. Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy. Adv. Mater. 2012, 24, 6034–6041. [Google Scholar] [CrossRef]
- Kociu, A.; Barbani, D.; Pugi, L.; Berzi, L.; Baldanzini, N.; Delogu, M. Finite element analysis of a lithium-ion battery cell under abuse conditions. In Proceedings of the 53rd Conference on Engineering Mechanical Design and Stress Analysis (AIAS2024), Naples, Italy, 4–7 September 2024. [Google Scholar]
System | Nanofilm | Nanosphere | |||
---|---|---|---|---|---|
c-Si (100) | c-Si (110) | a-Si | c-Si | a-Si | |
Cell size (Å3) | 70 × 70 × 160 | 70 × 70 × 155 | 70 × 70 × 140 | 130 × 130 × 130 | 130 × 130 × 130 |
Number of Si atoms | 12,506 | 12,506 | 12,145 | 3223 | 3456 |
Number of Li atoms | 20,630 | 20,630 | 21,883 | 97,013 | 97,013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, G.; Yang, M.-J.; Lee, S.; Shim, J.-H. Comparison Between Crystalline and Amorphous Silicon as Anodes for Lithium Ion Batteries: Electrochemical Performance from Practical Cells and Lithiation Behavior from Molecular Dynamics Simulations. Materials 2025, 18, 515. https://doi.org/10.3390/ma18030515
Kim G, Yang M-J, Lee S, Shim J-H. Comparison Between Crystalline and Amorphous Silicon as Anodes for Lithium Ion Batteries: Electrochemical Performance from Practical Cells and Lithiation Behavior from Molecular Dynamics Simulations. Materials. 2025; 18(3):515. https://doi.org/10.3390/ma18030515
Chicago/Turabian StyleKim, Geonhee, Min-Ji Yang, Sanghun Lee, and Jae-Hyun Shim. 2025. "Comparison Between Crystalline and Amorphous Silicon as Anodes for Lithium Ion Batteries: Electrochemical Performance from Practical Cells and Lithiation Behavior from Molecular Dynamics Simulations" Materials 18, no. 3: 515. https://doi.org/10.3390/ma18030515
APA StyleKim, G., Yang, M.-J., Lee, S., & Shim, J.-H. (2025). Comparison Between Crystalline and Amorphous Silicon as Anodes for Lithium Ion Batteries: Electrochemical Performance from Practical Cells and Lithiation Behavior from Molecular Dynamics Simulations. Materials, 18(3), 515. https://doi.org/10.3390/ma18030515