Laser-Based Additive Manufacturing Processability and Mechanical Properties of Al-Cu 224 Alloys with TiB Grain Refiner Additions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.2. Microstructural and Mechanical Characterization
2.3. Solidification Simulation and Hot Tearing Index
3. Results
3.1. As-Cast Microstructures
3.2. Microstructures After Laser Surface Remelting
3.2.1. Cracking in the Melt Pools
3.2.2. Grain Sizes in the Melt Pools
3.3. Effect of T6 Heat Treatment
3.3.1. Mechanical Properties
3.3.2. Microstructural Evolution
4. Discussion
4.1. Effect of Energy Density on Melt Pools
4.2. Hot Tearing Susceptibility
4.2.1. ThermoCalc Calculation
4.2.2. Effect of the Grain Size
4.3. Advantage and Limitation
5. Conclusions
- (1)
- The addition of 0.3–0.65 wt% Ti to Al-Cu 224 alloys by Al-5Ti-1B grain refiner significantly reduced the hot tearing susceptibility during laser-based rapid solidification. With sufficient amounts of TiB grain refiner, solidification cracks could be completely eliminated in these Al-Cu alloys, making them promising high-strength alloys for the SLM process.
- (2)
- The introduction of TiB2 particles into the melt pools from the TiB grain refiner changed the grain morphology from a coarse columnar to a fine equiaxed structure and significantly reduced the grain size. Following TiB modification, the grain sizes were reduced from 13 to 15 μm in the base alloys to 5.5 and 3.2 μm in the alloys with 0.3 wt% Ti (B-3TiB) and 0.65 wt% Ti (ZV-6TiB) additions, respectively.
- (3)
- The modified B-3TiB and ZV-6TiB alloys reached hardness values of 117 and 130 HV after T6 heat treatment, which surpassed the values of conventional AlSi10Mg alloys by at least 15–30%. This was attributed to the strengthening contributions from fine equiaxed grains and from nanoscale θ′/θ″-precipitation.
- (4)
- The laser surface remelting used in this study provides a simple and practical method to assess and optimize the processability and mechanical properties of high-strength aluminum alloys during laser-based rapid solidification processes. The processing and mechanical performances, and the microstructure–properties relationship of modified Al-Cu 224 alloys under real SLM process conditions, will be focused on in future studies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lv, Q.; Zhang, F.; Wei, H.; Li, Z.; Zhang, J. Effect of rare earth (La, Ce, Nd, Sc) on strength and toughness of 6082 aluminum alloy. Vacuum 2023, 215, 112333. [Google Scholar] [CrossRef]
- You, X.; Xing, Z.; Jiang, S.; Zhu, Y.; Lin, Y.; Qiu, H.; Nie, R.; Yang, J.; Hui, D.; Chen, W.; et al. A review of research on aluminum alloy materials in structural engineering. Dev. Built Environ. 2024, 17, 100319. [Google Scholar] [CrossRef]
- Liu, K.; Cao, X.; Chen, X.-G. Tensile Properties of Al-Cu 206 Cast Alloys with Various Iron Contents. Met. Mater. Trans. A 2014, 45, 2498–2507. [Google Scholar] [CrossRef]
- Gairola, S.; Jayaganthan, R.; Ajay, J. Laser powder bed fusion on Ti modified Al 2024 alloy: Influence of build orientation and T6 treatment on mechanical behaviour, microstructural features and strengthening mechanisms. Mater. Sci. Eng. A 2024, 896, 146296. [Google Scholar] [CrossRef]
- Yu, H.; Lyu, F.; Jiang, X.; Jin, Y.; Xu, Y. Mechanical properties and microscopic mechanisms of 2219-T6 aluminum alloy under dynamic tension with cryogenic temperatures. Mater. Sci. Eng. A 2024, 891, 145920. [Google Scholar] [CrossRef]
- Wei, J.; He, C.; Dong, R.; Tian, N.; Qin, G. Enhancing mechanical properties and defects elimination in 2024 aluminum alloy through interlayer friction stir processing in wire arc additive manufacturing. Mater. Sci. Eng. A 2024, 901, 146582. [Google Scholar] [CrossRef]
- Li, D.; Liu, K.; Rakhmonov, J.; Chen, X.-G. Enhanced thermal stability of precipitates and elevated-temperature properties via microalloying with transition metals (Zr, V and Sc) in Al–Cu 224 cast alloys. Mater. Sci. Eng. A 2021, 827, 142090. [Google Scholar] [CrossRef]
- Cui, L.; Liu, K.; Zhang, Z.; Chen, X.-G. Enhanced elevated-temperature mechanical properties of hot-rolled Al–Cu alloys: Effect of zirconium addition and homogenization. J. Mater. Sci. 2023, 58, 11424–11439. [Google Scholar] [CrossRef]
- Hu, P.; Liu, K.; Pan, L.; Chen, X.-G. Effects of individual and combined additions of transition elements (Zr, Ti and V) on the microstructure stability and elevated-temperature properties of Al–Cu 224 cast alloys. Mater. Sci. Eng. A 2023, 867, 144718. [Google Scholar] [CrossRef]
- Aboulkhair, N.T.; Simonelli, M.; Parry, L.; Ashcroft, I.; Tuck, C.; Hague, R. 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting. Prog. Mater. Sci. 2019, 106, 100578. [Google Scholar] [CrossRef]
- Dixit, S.; Liu, S. Laser Additive Manufacturing of High-Strength Aluminum Alloys: Challenges and Strategies. J. Manuf. Mater. Process. 2022, 6, 156. [Google Scholar] [CrossRef]
- Jia, Q.; Rometsch, P.; Cao, S.; Zhang, K.; Wu, X. Towards a high strength aluminium alloy development methodology for selective laser melting. Mater. Des. 2019, 174, 107775. [Google Scholar] [CrossRef]
- Martin, J.H.; Yahata, B.D.; Hundley, J.M.; Mayer, J.A.; Schaedler, T.A.; Pollock, T.M. 3D printing of high-strength aluminium alloys. Nature 2017, 549, 365–369. [Google Scholar] [CrossRef]
- Rometsch, P.A.; Zhu, Y.; Wu, X.; Huang, A. Review of high-strength aluminium alloys for additive manufacturing by laser powder bed fusion. Mater. Des. 2022, 219, 110779. [Google Scholar] [CrossRef]
- Mehta, A.; Zhou, L.; Huynh, T.; Park, S.; Hyer, H.; Song, S.; Bai, Y.; Imholte, D.D.; Woolstenhulme, N.E.; Wachs, D.M.; et al. Additive manufacturing and mechanical properties of the dense and crack free Zr-modified aluminum alloy 6061 fabricated by the laser-powder bed fusion. Addit. Manuf. 2021, 41, 101966. [Google Scholar] [CrossRef]
- Hu, Z.; Nie, X.; Qi, Y.; Zhang, H.; Zhu, H. Cracking criterion for high strength Al–Cu alloys fabricated by selective laser melting. Addit. Manuf. 2021, 37, 101709. [Google Scholar] [CrossRef]
- Elambasseril, J.; Benoit, M.J.; Zhu, S.; Easton, M.A.; Lui, E.; Brice, C.A.; Qian, M.; Brandt, M. Effect of process parameters and grain refinement on hot tearing susceptibility of high strength aluminum alloy 2139 in laser powder bed fusion. Prog. Addit. Manuf. 2022, 7, 887–901. [Google Scholar] [CrossRef]
- Benoit, M.; Whitney, M.; Zhu, S.; Zhang, D.; Field, M.; Easton, M. The beneficial effect of minor iron additions on the crack susceptibility of rapidly solidified aluminum alloy 6060 toward additive manufacturing applications. Mater. Charact. 2023, 205, 113287. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, J.; Shi, Y.; Fei, Q.; Zhao, N.; Ni, C.; Wu, J.; Dong, Y.; Dai, T.; Ding, H.; et al. An SLM-processed Er- and Zr- modified Al–Mg alloy: Microstructure and mechanical properties at room and elevated temperatures. Mater. Sci. Eng. A 2023, 883, 145485. [Google Scholar] [CrossRef]
- Uddin, S.Z.; Murr, L.E.; Terrazas, C.A.; Morton, P.; Roberson, D.A.; Wicker, R.B. Processing and characterization of crack-free aluminum 6061 using high-temperature heating in laser powder bed fusion additive manufacturing. Addit. Manuf. 2018, 22, 405–415. [Google Scholar] [CrossRef]
- Tan, Q.; Liu, Y.; Fan, Z.; Zhang, J.; Yin, Y.; Zhang, M.-X. Effect of processing parameters on the densification of an additively manufactured 2024 Al alloy. J. Mater. Sci. Technol. 2020, 58, 34–45. [Google Scholar] [CrossRef]
- Zhou, S.; Su, Y.; Wang, H.; Enz, J.; Ebel, T.; Yan, M. Selective laser melting additive manufacturing of 7xxx series Al-Zn-Mg-Cu alloy: Cracking elimination by co-incorporation of Si and TiB2. Addit. Manuf. 2020, 36, 101458. [Google Scholar] [CrossRef]
- Zheng, T.; Pan, S.; Murali, N.; Li, B.; Li, X. Selective laser melting of novel 7075 aluminum powders with internally dispersed TiC nanoparticles. Mater. Lett. 2022, 319, 132268. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, W.; Song, B.; Yin, S.; Wang, X.; Wei, Q.; Shi, Y. Towards understanding metallurgical defect formation of selective laser melted wrought aluminum alloys. Adv. Powder Mater. 2022, 1, 100035. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, H.; Nie, X.; Yin, J.; Hu, Z.; Zeng, X. Effect of Zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy. Scr. Mater. 2017, 134, 6–10. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Zhou, Z.; Wang, K.; Zhan, Q.; Xiao, X. Grain refinement and crack inhibition of selective laser melted AA2024 aluminum alloy via inoculation with TiC–TiH2. Mater. Sci. Eng. A 2021, 813, 141171. [Google Scholar] [CrossRef]
- Del Guercio, G.; McCartney, D.; Aboulkhair, N.; Robertson, S.; Maclachlan, R.; Tuck, C.; Simonelli, M. Cracking behaviour of high-strength AA2024 aluminium alloy produced by Laser Powder Bed Fusion. Addit. Manuf. 2022, 54, 102776. [Google Scholar] [CrossRef]
- Jia, Q.; Rometsch, P.; Cao, S.; Zhang, K.; Huang, A.; Wu, X. Characterisation of AlScZr and AlErZr alloys processed by rapid laser melting. Scr. Mater. 2018, 151, 42–46. [Google Scholar] [CrossRef]
- Carluccio, D.; Bermingham, M.; Zhang, Y.; StJohn, D.; Yang, K.; Rometsch, P.; Wu, X.; Dargusch, M. Grain refinement of laser remelted Al-7Si and 6061 aluminium alloys with Tibor® and scandium additions. J. Manuf. Process. 2018, 35, 715–720. [Google Scholar] [CrossRef]
- Roscher, M.; Sun, Z.; Jägle, E. Designing Al alloys for laser powder bed fusion via laser surface melting: Microstructure and processability of 7034 and modified 2065. J. Mech. Work. Technol. 2024, 326, 118334. [Google Scholar] [CrossRef]
- Easton, M.A.; Gibson, M.A.; Zhu, S.; Abbott, T.B. An A Priori Hot-Tearing Indicator Applied to Die-Cast Magnesium-Rare Earth Alloys. Met. Mater. Trans. A 2014, 45, 3586–3595. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, S.; Li, F.; Wang, Y.; Li, Z.; Chen, Y.; Wang, L.; Liu, B.; Bai, P. Study on defects of Zr-containing Al–Cu–Mn–Mg alloys manufactured by selective laser melting. J. Mater. Res. Technol. 2024, 29, 119–129. [Google Scholar] [CrossRef]
- Easton, M.; StJohn, D. Grain refinement of aluminum alloys: Part I. the nucleant and solute paradigms—A review of the literature. Met. Mater. Trans. A 1999, 30, 1613–1623. [Google Scholar] [CrossRef]
- Tan, Q.; Zhang, J.; Sun, Q.; Fan, Z.; Li, G.; Yin, Y.; Liu, Y.; Zhang, M.-X. Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles. Acta Mater. 2020, 196, 1–16. [Google Scholar] [CrossRef]
- Fan, Z.; Li, C.; Yang, H.; Liu, Z. Effects of TiC nanoparticle inoculation on the hot-tearing cracks and grain refinement of additively-manufactured AA2024 Al alloys. J. Mater. Res. Technol. 2022, 19, 194–207. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, X.; Kang, N.; Hu, Y.; Chen, J.; Huang, W. Strength-ductility synergy of selective laser melted Al-Mg-Sc-Zr alloy with a heterogeneous grain structure. Addit. Manuf. 2020, 34, 101260. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Dai, W.; Han, Q. On the Understanding of Aluminum Grain Refinement by Al-Ti-B Type Master Alloys. Met. Mater. Trans. B 2015, 46, 1620–1625. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, J.; Song, B.; Zhang, L.; Han, C.; Cai, C.; Zhou, K.; Shi, Y. A novel crack-free Ti-modified Al-Cu-Mg alloy designed for selective laser melting. Addit. Manuf. 2021, 38, 101829. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Katgerman, L.; Du, Q.; Zhang, J.; Zhuang, L. Recent advances in hot tearing during casting of aluminium alloys. Prog. Mater. Sci. 2021, 117, 100741. [Google Scholar] [CrossRef]
- Lei, Z.; Wen, S.; Huang, H.; Wei, W.; Nie, Z. Grain Refinement of Aluminum and Aluminum Alloys by Sc and Zr. Metals 2023, 13, 751. [Google Scholar] [CrossRef]
- Aboulkhair, N.T.; Maskery, I.; Tuck, C.; Ashcroft, I.; Everitt, N.M. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment. Mater. Sci. Eng. A 2016, 667, 139–146. [Google Scholar] [CrossRef]
- Wang, L.; Sun, J.; Yu, X.; Shi, Y.; Zhu, X.; Cheng, L.; Liang, H.; Yan, B.; Guo, L. Enhancement in mechanical properties of selectively laser-melted AlSi10Mg aluminum alloys by T6-like heat treatment. Mater. Sci. Eng. A 2018, 734, 299–310. [Google Scholar] [CrossRef]
- Aboulkhair, N.T.; Tuck, C.; Ashcroft, I.; Maskery, I.; Everitt, N.M. On the Precipitation Hardening of Selective Laser Melted AlSi10Mg. Met. Mater. Trans. A 2015, 46, 3337–3341. [Google Scholar] [CrossRef]
- Clement, C.D.; Masson, J.; Kabir, A.S. Effects of Heat Treatment on Microstructure and Mechanical Properties of AlSi10Mg Fabricated by Selective Laser Melting Process. J. Manuf. Mater. Process. 2022, 6, 52. [Google Scholar] [CrossRef]
- Van Cauwenbergh, P.; Samaee, V.; Thijs, L.; Nejezchlebová, J.; Sedlák, P.; Iveković, A.; Schryvers, D.; Van Hooreweder, B.; Vanmeensel, K. Unravelling the multi-scale structure–property relationship of laser powder bed fusion processed and heat-treated AlSi10Mg. Sci. Rep. 2021, 11, 6423. [Google Scholar] [CrossRef] [PubMed]
- Takata, N.; Kodaira, H.; Sekizawa, K.; Suzuki, A.; Kobashi, M. Change in microstructure of selectively laser melted AlSi10Mg alloy with heat treatments. Mater. Sci. Eng. A 2017, 704, 218–228. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, H.; Qi, T.; Hu, Z.; Zeng, X. Selective laser melting of high strength Al–Cu–Mg alloys: Processing, microstructure and mechanical properties. Mater. Sci. Eng. A 2016, 656, 47–54. [Google Scholar] [CrossRef]
Si | Fe | Cu | Mn | Mg | Zr | V | Ti | Al | |
---|---|---|---|---|---|---|---|---|---|
Base | 0.06 | 0.12 | 4.7 | 0.35 | 0.14 | 0.01 | 0.01 | 0.05 | Bal. |
B-3TiB | 0.22 | 0.12 | 4.59 | 0.36 | 0.10 | 0.01 | 0.02 | 0.34 | Bal. |
ZV | 0.04 | 0.11 | 4.69 | 0.34 | 0.12 | 0.15 | 0.21 | 0.05 | Bal. |
ZV-3TiB | 0.11 | 0.12 | 4.35 | 0.34 | 0.08 | 0.15 | 0.22 | 0.31 | Bal. |
ZV-6TiB | 0.09 | 0.13 | 4.36 | 0.34 | 0.07 | 0.14 | 0.24 | 0.65 | Bal. |
Alloys | HV | Heat Treatment | References | |
---|---|---|---|---|
1 | B-3TiB | 117 | T6 | Present study |
2 | ZV-6TiB | 130 | T6 | Present study |
3 | AlSi10Mg | 80 * | T6 | [41] |
4 | AlSi10Mg | 83 | T6 | [42] |
5 | AlSi10Mg | 79 | T6 | [43] |
6 | AlSi10Mg | 100 | T6 | [44] |
7 | AlSi10Mg | 70 * | Stress relief | [45] |
8 | AlSi10Mg | 88 | Stress relief | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pourkhorshid, E.; Rometsch, P.; Chen, X.-G. Laser-Based Additive Manufacturing Processability and Mechanical Properties of Al-Cu 224 Alloys with TiB Grain Refiner Additions. Materials 2025, 18, 516. https://doi.org/10.3390/ma18030516
Pourkhorshid E, Rometsch P, Chen X-G. Laser-Based Additive Manufacturing Processability and Mechanical Properties of Al-Cu 224 Alloys with TiB Grain Refiner Additions. Materials. 2025; 18(3):516. https://doi.org/10.3390/ma18030516
Chicago/Turabian StylePourkhorshid, Esmaeil, Paul Rometsch, and X.-Grant Chen. 2025. "Laser-Based Additive Manufacturing Processability and Mechanical Properties of Al-Cu 224 Alloys with TiB Grain Refiner Additions" Materials 18, no. 3: 516. https://doi.org/10.3390/ma18030516
APA StylePourkhorshid, E., Rometsch, P., & Chen, X.-G. (2025). Laser-Based Additive Manufacturing Processability and Mechanical Properties of Al-Cu 224 Alloys with TiB Grain Refiner Additions. Materials, 18(3), 516. https://doi.org/10.3390/ma18030516