Enhanced Fire-Extinguishing Performance and Synergy Mechanism of HM/DAP Composite Dry Powder
Abstract
:1. Introduction
2. Experiments and Methods
2.1. Materials and Preparation Procedures
2.2. Microscopic Characterization Testing
2.3. Experimental Apparatus
2.4. Experimental Methods for Liquid Fuel and Solid Fires
3. Results and Discussion
3.1. Material Characterization
3.2. Fire-Extinguishing Performance
3.2.1. Liquid Fire Experiment
3.2.2. Solid Fire Experiment
3.3. Fire-Extinguishing Mechanism Analysis
4. Conclusions
- (1)
- The scanning electron microscopy analysis revealed that blending DAP optimized the microstructure of the HM/DAP dry powder, facilitating a uniform diffusion and coverage on combustible surfaces upon deployment in fires.
- (2)
- The fire-extinguishing experiments demonstrated that the modified HM/DAP dry powder displayed robust efficacy across different fire types (solid and liquid) and achieved an excellent extinguishing performance.
- (3)
- The thermogravimetric analysis coupled with differential scanning calorimetry data indicated the prolonged pyrolysis of the HM/DAP dry powder, ensuring thorough contact with the flames. The introduction of DAP enabled the composite powder to realize the combination of chemical suppression on the flame surface and physical suppression at the flame base, thus enhancing fire suppression.
- (4)
- The analysis of the CO concentrations at the fire scenes revealed that the application of the HM/DAP dry powder resulted in minimal CO emissions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chowdhury, R.B.; Moore, G.A.; Weatherley, A.J.; Arora, M. Key sustainability challenges for the global phosphorus resource, their implications for global food security, and options for mitigation. J. Clean. Prod. 2017, 140, 945–963. [Google Scholar] [CrossRef]
- Reijnders, L. Phosphorus resources, their depletion and conservation, a review. Resour. Conserv. Recycl. 2014, 93, 32–49. [Google Scholar] [CrossRef]
- Ulrich, A.E.; Frossard, E. On the history of a reoccurring concept: Phosphorus scarcity. Sci. Total Environ. 2014, 490, 694–707. [Google Scholar] [CrossRef]
- Edixhoven, J.D.; Gupta, J.; Savenije, H.H.G. Recent revisions of phosphate rock reserves and resources: A critique. Earth Syst. Dynam. 2014, 5, 491–507. [Google Scholar] [CrossRef]
- Wu, F.; Wang, J.; Liu, J.; Zeng, G.; Xiang, P.; Hu, P.; Xiang, W. Distribution, geology and development status of phosphate resources. Geol. China 2021, 48, 82–101. [Google Scholar]
- Cheng, M.; Shi, C.; Hao, L.; Wang, X.; Guo, X.; Liu, R.; Hao, X. Sustainable development of phosphorus recovery: From a product perspective. Sustain. Prod. Consum. 2023, 41, 275–290. [Google Scholar] [CrossRef]
- Hu, X.; Wang, J.; Wu, F.; Li, D.; Yang, J.; Chen, J.; Liang, J.; Lou, X.; Chen, H. Phosphorus recovery and resource utilization from phosphogypsum leachate via membrane-triggered adsorption and struvite crystallization approach. Chem. Eng. J. 2023, 471, 144310. [Google Scholar] [CrossRef]
- Zhu, F.; Cakmak, E.K.; Cetecioglu, Z. Phosphorus recovery for circular Economy: Application potential of feasible resources and engineering processes in Europe. Chem. Eng. J. 2023, 454, 140153. [Google Scholar] [CrossRef]
- Zhu, H.; Li, Z.; Zhao, J.; Li, R. Preparation of novel gel foam and its fire suppression performance against gasoline pool fires. Energy 2024, 304, 132148. [Google Scholar] [CrossRef]
- Meng, X.; Wang, Z.; Liu, B.; Gao, Y.; Zhang, J.; Sun, J.; Wang, Q. Enhancing extinguishing efficiency for lithium-ion battery fire: Investigating the extinguishing mechanism and surface/interfacial activity of F-500 microcapsule extinguishing agent. eTransportation 2024, 22, 100357. [Google Scholar] [CrossRef]
- Kim, S.; Choi, H.; Song, Y.K.; Kim, S.; Noh, S.M.; Lee, K.C. Thermoresponsive microcapsules with fire-extinguishing composites for fire prevention. ACS Appl. Polym. Mater. 2024, 6, 3373–3378. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, J.; Fu, Y.; Yu, Z.; Lu, S.; Zhang, H.; Jiang, Y. Study on the hydrophobic nano silica particles as flow-enhancing additives for ultrafine dry powder fire extinguishing agent. Adv. Powder Technol. 2024, 35, 104397. [Google Scholar] [CrossRef]
- Isola, M.; Colucci, G.; Diana, A.; Sin, A.; Tonani, A.; Maurino, V. Thermal properties and decomposition products of modified cotton fibers by TGA, DSC, and Py–GC/MS. Polym. Degrad. Stab. 2024, 228, 110937. [Google Scholar] [CrossRef]
- Pantaleoni, A.; Sarasini, F.; Russo, P.; Passaro, J.; Giorgini, L.; Bavasso, I.; Santarelli, M.L.; Petrucci, E.; Valentini, F.; Bracciale, M.P.; et al. Facile and bioinspired approach from gallic acid for the synthesis of biobased flame retardant coatings of basalt fibers. ACS Omega 2024, 9, 19099–19107. [Google Scholar] [CrossRef]
- Cao, F.-C.; Ma, X.-Y.; Li, Q.-R.; Tang, Y.; Dong, X.-L.; Huang, A.-C. Investigating the efficacy of expanded graphite/NaCl composite powder as an extinguishing agent for metal combustion suppression. J. Loss Prev. Process Ind. 2024, 87, 105249. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Li, Q.; Pan, R.; Zhou, X. A novel approach for enhancing fire suppression efficiency of dry powder extinguishant: From the synergistic effect of dawsonite. Powder Technol. 2024, 431, 119052. [Google Scholar] [CrossRef]
- Bifulco, A.; Climaco, I.; Casciello, A.; Passaro, J.; Battegazzore, D.; Nebbioso, V.; Russo, P.; Imparato, C.; Aronne, A.; Malucelli, G. Prediction and validation of fire parameters for a self-extinguishing and smoke suppressant electrospun PVP-based multilayer material through machine learning models. J. Mater. Sci. 2025, 60, 1019–1040. [Google Scholar] [CrossRef]
- Guo, Y.; Chang, Z.; Tan, Z. Study on fire extinguishing mechanism of allophanate based on Monnex dry powder. Comput. Theor. Chem. 2023, 1230, 114361. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Liu, J.; Li, Q.; Pan, R.; Zhou, X. Alkaline potassium aluminum carbonate: A novel high-efficiency dry powder extinguishing agent with high heat-resistant. J. Anal. Appl. Pyrolysis 2023, 173, 106038. [Google Scholar] [CrossRef]
- Atay, H.Y.; Çelik, E. Use of Turkish huntite/hydromagnesite mineral in plastic materials as a flame retardant. Polym. Composite. 2010, 31, 1692–1700. [Google Scholar] [CrossRef]
- Power, I.M.; Wilson, S.; Thom, J.M.; Dipple, G.M.; Gabites, J.E.; Southam, G. The hydromagnesite playas of Atlin, British Columbia, Canada: A biogeochemical model for CO2 sequestration. Chem. Geol. 2009, 260, 286–300. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, Z.; Liang, Z.; Du, S.; Cai, G.; Wang, X.; Zhou, Y.; Zhang, H. The preparation and fire extinguishing mechanism research of a novel high-efficiency KHCO3@HM dry powder. Mater. Today Commun. 2024, 38, 107817. [Google Scholar] [CrossRef]
- Cai, N.; Chow, W.-k. Numerical studies on heat release rate in a room fire burning wood and liquid fuel. Build. Simul. 2014, 7, 511–524. [Google Scholar] [CrossRef]
- Hautamäki, S.; Altgen, M.; Altgen, D.; Larnøy, E.; Hänninen, T.; Rautkari, L. The effect of diammonium phosphate and sodium silicate on the adhesion and fire properties of birch veneer. Holzforschung 2020, 74, 372–381. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, X.; Dai, H.; Huang, C.; Liu, J.; He, S.; Yuan, B.; Yang, P.; Zhu, H.; Liang, G.; et al. Inhibition of diammonium phosphate on the wheat dust explosion. Powder Technol. 2020, 367, 751–761. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, X.; Deng, J.; Luo, Z.; Wang, Q.; Shen, Z.; Shu, C.-M.; Peng, B.; Yu, C. Analysis of the effectiveness of Mg(OH)2/NH4H2PO4 composite dry powder in suppressing methane explosion. Powder Technol. 2023, 417, 118255. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Zhu, F.-H.; Zhou, H.-L.; Chu, S.-L.; Jiang, J.-C.; Huang, A.-C. Investigation in the fire suppression properties of KHCO3 and K2C2O4 dry water incorporates core-shell structures. J. Loss Prev. Process Ind. 2024, 87, 105205. [Google Scholar] [CrossRef]
- Chai, G.; Xie, Y.; Wang, Y.; Zhu, G.; Markert, F. Experimental study on preparation of a new cleaner water-based powder agent and its extinguishing efficiency and thermodynamic mechanism on a typical fuel fire. J. Therm. Anal. Calorim. 2024, 149, 6483–6501. [Google Scholar] [CrossRef]
- Du, D.; Shen, X.; Feng, L.; Hua, M.; Pan, X. Efficiency characterization of fire extinguishing compound superfine powder containing Mg(OH)2. J. Loss Prev. Process Ind. 2019, 57, 73–80. [Google Scholar] [CrossRef]
- Liang, Z.; Liu, J.; Wan, Y.; Feng, Z.; Zhang, P.; Wang, M.; Zhang, H. Preparation and fire extinguishing mechanism of novel fire extinguishing powder based on recyclable struvite. Mater. Today Commun. 2023, 34, 105410. [Google Scholar] [CrossRef]
- Zhang, L.; Feng, Y.; Wu, S.; Jia, H. Numerical study of the effect of primary nozzle geometry on supersonic gas-solid jet of bypass injected dry powder fire extinguishing device. Fire 2024, 7, 45. [Google Scholar] [CrossRef]
- Lu, G.; Zhao, J.; Zhou, Y.; Fu, Y.; Lu, S.; Zhang, H. Study on flowability enhancement and performance testing of ultrafine dry powder fire extinguishing agents based on application requirements. Fire 2024, 7, 146. [Google Scholar] [CrossRef]
- Zhao, J.; Yin, Z.; Usman Shahid, M.; Xing, H.; Cheng, X.; Fu, Y.; Lu, S. Superhydrophobic and oleophobic ultra-fine dry chemical agent with higher chemical activity and longer fire-protection. J. Hazard. Mater. 2019, 380, 120625. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Guo, X.; Liu, J.; Zhang, Z.; Pan, X.; Hua, M.; Wu, Z.; Jiang, J. Experimental study on the inhibition of hydrogen deflagration by flame-retardant compounded ultrafine dry powder fire extinguishing media containing zinc hydroxystannate. Renew. Energy 2024, 228, 120644. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, G.; Chai, G.; Zhou, Y.; Chen, C.; Zhang, W. Experimental study on the effect of release pressure on the extinguishing efficiency of dry water. Case Stud. Therm. Eng. 2021, 26, 101177. [Google Scholar] [CrossRef]
- Zheng, X.; Kou, Z.; Liu, S.; Cai, G.; Wu, P.; Huang, Y.; Yang, Z. Preparation and properties of a new core–shell-modified gel dry-water powder. Powder Technol. 2023, 422, 118493. [Google Scholar] [CrossRef]
- Han, Z.; Gong, L.; Du, Z.; Duan, H. A Novel Environmental-Friendly Gel Dry-Water Extinguishant Containing Additives with Efficient Combustion Suppression Efficiency. Fire Technol. 2020, 56, 2365–2385. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, H.; Wang, Y.; Pan, R.; Zhou, X. Preparation of NaHCO3 fire extinguishing agent with perfluoropolyether groups to inhibit rapid re-ignition of Class B fires. Colloids Surf. Physicochem. Eng. Asp. 2024, 691, 133881. [Google Scholar] [CrossRef]
- Hangchen, L.; Xiaohui, S.; Xinxin, G.; Shunchao, L.; Han, Z.; Chendong, Z.; Min, H.; Xuhai, P. High efficiency of the NH4H2PO4/Mg(OH)2 composite for guaranteeing safety of wood production. J. Loss Prev. Process Ind. 2021, 69, 104364. [Google Scholar] [CrossRef]
- Hollingbery, L.A.; Hull, T.R. The thermal decomposition of huntite and hydromagnesite—A review. Thermochim. Acta 2010, 509, 1–11. [Google Scholar] [CrossRef]
- Hollingbery, L.A.; Hull, T.R. The thermal decomposition of natural mixtures of huntite and hydromagnesite. Thermochim. Acta 2012, 528, 45–52. [Google Scholar] [CrossRef]
- Hollingbery, L.A.; Hull, T.R. The fire retardant behaviour of huntite and hydromagnesite—A review. Polym. Degrad. Stab. 2010, 95, 2213–2225. [Google Scholar] [CrossRef]
- Hollingbery, L.A.; Hull, T.R. The fire retardant effects of huntite in natural mixtures with hydromagnesite. Polym. Degrad. Stab. 2012, 97, 504–512. [Google Scholar] [CrossRef]
- Fan, R.; Jiang, Y.; Jiang, H. Experimental and theoretical investigation of dry-water containing phosphoric acid for new fire suppressant. J. Loss Prev. Process Ind. 2021, 70, 104399. [Google Scholar] [CrossRef]
- Pardo, A.; Romero, J.; Ortiz, E. High-temperature behaviour of ammonium dihydrogen phosphate. J. Phys. Conf. Ser. 2017, 935, 012050. [Google Scholar] [CrossRef]
- Zhang, C.; Li, H.; Guo, X.; Li, S.; Zhang, H.; Pan, X.; Hua, M. Experimental and theoretical studies on the effect of Al(OH)3 on the fire-extinguishing performance of superfine ABC dry powder. Powder Technol. 2021, 393, 280–290. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Diao, S.; Yao, Y.; Wei, C.; Yu, M. Reactive behaviors and mechanism of methane/coal dust hybrid explosions inhibited by NH4H2PO4 and (NH4)2HPO4: A combined ReaxFF-MD and DFT study. Chem. Eng. J. 2024, 498, 155577. [Google Scholar] [CrossRef]
Powder | D50 (μm) | D90 (μm) | SBET (m2/g) | VTotal (cm3/g) | D (nm) |
---|---|---|---|---|---|
MAP | 12.584 | 28.350 | 12.800 | 0.058 | 19.15 |
DAP | 12.289 | 24.229 | 12.701 | 0.073 | 21.52 |
HM | 12.655 | 30.920 | 35.885 | 0.147 | 16.64 |
HM/DAP | 11.179 | 31.141 | 32.834 | 0.181 | 18.31 |
Powder | Bulk Density (g/cm3) | Tap Density (g/cm3) | Fluidity (g/s) | Angle of Repose (°) | Contact Angle (°) |
---|---|---|---|---|---|
MAP | 0.51 | 0.52 | 0.04 | 37 | 90.42 |
DAP | 0.51 | 0.53 | 0.04 | 37 | 90.47 |
HM | 0.47 | 0.50 | 0.03 | 40 | 90.10 |
HM/DAP | 0.49 | 0.51 | 0.04 | 38 | 90.54 |
Powder | Pressure (MPa) | Fire Extinction Time (s) | Powder Consumption (g) |
---|---|---|---|
MAP | 0.1 | 22.8 | 27.42 |
0.2 | 4.7 | 20.30 | |
0.3 | 2.1 | 14.57 | |
MAP dry water 1 | 0.8 | >40 | 16.88 |
Ultrafine NaHCO3 2 | 0.2 | 1.29 | 6.09 |
DAP | 0.1 | 23.3 | 24.15 |
0.2 | 5.0 | 18.25 | |
0.3 | 2.7 | 13.74 | |
HM | 0.1 | 4.0 | 27.66 |
0.2 | 3.1 | 24.34 | |
0.3 | 2.2 | 19.95 | |
HM/DAP | 0.1 | 4.7 | 23.18 |
0.2 | 2.9 | 15.82 | |
0.3 | 2.0 | 12.65 |
Powder | Fire Extinction Time (s) | Powder Consumption (g) |
---|---|---|
5 wt.% HM/DAP | 1.4 | 18.67 |
10 wt.% HM/DAP | 1.2 | 15.10 |
15 wt.% HM/DAP | 1.6 | 18.89 |
20 wt.% HM/DAP | 1.8 | 19.12 |
Powder | Pressure (MPa) | Fire Extinction Time (s) | Powder Consumption (g) |
---|---|---|---|
MAP | 0.1 | 12.7 | 26.22 |
0.2 | 4.0 | 17.01 | |
0.3 | 2.2 | 12.57 | |
C-ABC 1 | 0.2 | Not extinguished | 57 |
0.6 | 4.6 | 39 | |
MAP/Mg(OH)2 1 | 0.2 | Not extinguished | 50 |
0.6 | 3.4 | 30 | |
DAP | 0.1 | 14.2 | 22.82 |
0.2 | 4.1 | 12.83 (smoldering) | |
0.3 | 2.7 | 10.25 | |
HM | 0.1 | 1.8 | 25.05 |
0.2 | 1.6 | 19.32 | |
0.3 | 1.2 | 17.15 (smoldering) | |
HM/DAP | 0.1 | 1.9 | 23.71 |
0.2 | 1.2 | 15.10 | |
0.3 | 0.9 | 10.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Du, S.; Zhou, Z.; Guo, Y.; Yang, Q.; Yao, S.; Zhang, H. Enhanced Fire-Extinguishing Performance and Synergy Mechanism of HM/DAP Composite Dry Powder. Materials 2025, 18, 533. https://doi.org/10.3390/ma18030533
Wang L, Du S, Zhou Z, Guo Y, Yang Q, Yao S, Zhang H. Enhanced Fire-Extinguishing Performance and Synergy Mechanism of HM/DAP Composite Dry Powder. Materials. 2025; 18(3):533. https://doi.org/10.3390/ma18030533
Chicago/Turabian StyleWang, Lijing, Shaowen Du, Zhiji Zhou, Yibo Guo, Qi Yang, Sai Yao, and Haijun Zhang. 2025. "Enhanced Fire-Extinguishing Performance and Synergy Mechanism of HM/DAP Composite Dry Powder" Materials 18, no. 3: 533. https://doi.org/10.3390/ma18030533
APA StyleWang, L., Du, S., Zhou, Z., Guo, Y., Yang, Q., Yao, S., & Zhang, H. (2025). Enhanced Fire-Extinguishing Performance and Synergy Mechanism of HM/DAP Composite Dry Powder. Materials, 18(3), 533. https://doi.org/10.3390/ma18030533