XPS Depth Profiling of Surface Restructuring Responsible for Hydrogen Evolution Reaction Activity of Nickel Sulfides in Alkaline Electrolyte
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Ni3S2 Framework
2.2. Phosphorization of Ni3S2 (P-Ni3S2)
2.3. Characterizations
2.4. Electrochemical Performance
2.5. Preparation of Catalyst Ink and Pt Electrode
3. Results and Discussion
3.1. Catalyst Structure
3.2. Surface Chemistry
3.3. Electrochemical Performances
3.4. Surface Chemistry and Electronic Structure Evolution
3.5. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perović, I.; Kaninski, M.M.; Tasić, G.; Maslovara, S.; Laušević, P.; Seović, M.; Nikolić, V. Enhanced Catalytic Activity and Energy Savings with Ni-Zn-Mo Ionic Activators for Hydrogen Evolution in Alkaline Electrolysis. Materials 2023, 16, 5268. [Google Scholar] [CrossRef]
- Kuang, J.; Li, Z.; Li, W.; Chen, C.; La, M.; Hao, Y. Achieving High Activity and Long-Term Stability towards Oxygen Evolution in Acid by Phase Coupling between CeO2-Ir. Materials 2023, 16, 7000. [Google Scholar] [CrossRef] [PubMed]
- Li, J. Oxygen Evolution Reaction in Energy Conversion and Storage: Design Strategies Under and Beyond the Energy Scaling Relationship. Nano-Micro Lett. 2022, 14, 112. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Cui, X.; Sewell, C.D.; Li, J.; Lin, Z. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chem. Soc. Rev. 2021, 50, 8428–8469. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Meng, Q.; Xiao, M.; Liu, C.; Xing, W.; Zhu, J. Insights into the Dynamic Surface Reconstruction of Electrocatalysts in Oxygen Evolution Reaction. Renewables 2024, 2, 272–296. [Google Scholar] [CrossRef]
- Li, J.; Chu, D.; Baker, D.R.; Leff, A.; Zheng, P.; Jiang, R. Earth-Abundant Fe and Ni Dually Doped Co2P for Superior Oxygen Evolution Reactivity and as a Bifunctional Electrocatalyst toward Renewable Energy-Powered Overall Alkaline Water Splitting. ACS Appl. Energy Mater. 2021, 4, 9969–9981. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, L.; Zhao, P.; Lee, L.; Wong, K. Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chem. Rev. 2020, 120, 851–918. [Google Scholar] [CrossRef]
- Yan, B.; Krishnamurthy, D.; Hendon, C.H.; Deshpande, S.; Surendranath, Y.; Viswanathan, V. Surface Restructuring of Nickel Sulfide Generates Optimally Coordinated Active Sites for Oxygen Reduction Catalysis. Joule 2017, 1, 600–612. [Google Scholar] [CrossRef]
- Li, J.; Chu, D.; Baker, D.R.; Jiang, R. Seamless separation of OHad and Had on a Ni-O catalyst toward exceptional alkaline hydrogen evolution. J. Mater. Chem. A 2022, 10, 1278. [Google Scholar] [CrossRef]
- Ding, X.; Liu, D.; Zhao, P.; Chen, X.; Wang, H.; Oropeza, F.E.; Gorni, G.; Barawi, M.; García-Tecedor, M.; de la Peña O’Shea, V.A.; et al. Dynamic restructuring of nickel sulfides for electrocatalytic hydrogen evolution reaction. Nat. Commun. 2024, 15, 5336. [Google Scholar] [CrossRef]
- Ma, Q.; Hu, C.; Liu, K.; Hung, S.; Ou, D.; Chen, H.; Fu, G.; Zheng, N. Identifying the electrocatalytic sites of nickel disulfide in alkaline hydrogen evolution reaction. Nano Energy 2017, 41, 148–153. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, H.; Hsu, C.; Lin, T.; Chang, C.; Chang, S.; Tsai, L.; Chen, H. Operando unraveling of the structural and chemical stability of P-substituted CoSe2 electrocatalysts toward hydrogen and oxygen evolution reactions in alkaline electrolyte. ACS Energy Lett. 2019, 4, 987–994. [Google Scholar] [CrossRef]
- Zhai, L.; Lo, T.; Xu, Z.; Potter, J.; Mo, J.; Guo, X.; Tang, C.; Tsang, S.; Lau, S. In situ phase transformation on nickel-based selenides for enhanced hydrogen evolution reaction in alkaline medium. ACS Energy Lett. 2020, 5, 2483–2491. [Google Scholar] [CrossRef]
- Gilbert, J.B.; Rubner, M.F.; Cohen, R.E. Depth-profiling X-ray photoelectron spectroscopy (XPS) analysis of interlayer diffusion in polyelectrolyte multilayers. Proc. Natl. Acad. Sci. USA 2013, 110, 6651–6656. [Google Scholar] [CrossRef] [PubMed]
- Racz, A.S.; Menyhard, M. XPS depth profiling of nano-layers by a novel trial-and-error evaluation procedure. Sci. Rep. 2024, 14, 18497. [Google Scholar] [CrossRef] [PubMed]
- Oswald, S.; Lattner, E.; Seifert, M. XPS chemical state analysis of sputter depth profiling measurements for annealed TiAl-SiO2 and TiAl-W layer stacks. Surf. Interface Anal. 2020, 52, 924–928. [Google Scholar] [CrossRef]
- Li, J.; Chu, D.; Dong, H.; Baker, D.R.; Jiang, R. Boosted oxygen evolution reactivity by igniting double exchange interaction in spinel oxides. J. Am. Chem. Soc. 2020, 142, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Yu, G.; Wu, Y.; Li, G.; Li, H.; Sun, Y.; Asefa, T.; Chen, W.; Zou, X. High-Index Faceted Ni3S2 Nanosheet Arrays as Highly Active and Ultrastable Electrocatalysts for Water Splitting. J. Am. Chem. Soc. 2015, 137, 14023–14026. [Google Scholar] [CrossRef]
- Jiang, N.; Tang, Q.; Sheng, M.; You, B.; Jiang, D.; Sun, Y. Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: A case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles. Catal. Sci. Technol. 2016, 6, 1077–1084. [Google Scholar] [CrossRef]
- Wang, L.; Cao, J.; Lei, C.; Dai, Q.; Yang, B.; Li, Z.; Zhang, X.; Yuan, C.; Lei, L.; Hou, Y. Strongly Coupled 3D N-Doped MoO2/Ni3S2 Hybrid for High Current Density Hydrogen Evolution Electrocatalysis and Biomass Upgrading. ACS Appl. Mater. Interfaces 2019, 11, 27743–27750. [Google Scholar] [CrossRef]
- Hsieh, C.; Chuah, X.; Huang, C.; Lin, H.; Chen, Y.; Lu, S. NiFe/(Ni,Fe)3S2 core/shell nanowire arrays as outstanding catalysts for electrolytic water splitting at high current densities. Small Methods 2019, 3, 1900234. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Z.; Wang, F.; Feng, L. Efficient catalysis of N doped NiS/NiS2 heterogeneous structure. Chem. Eng. J. 2020, 397, 125507. [Google Scholar] [CrossRef]
- Sha, L.; Liu, T.; Ye, K.; Zhu, K.; Yan, J.; Yin, J.; Wang, G.; Cao, D. A heterogeneous interface on NiS@Ni3S2/NiMoO4 heterostructures for efficient urea electrolysis. J. Mater. Chem. A 2020, 8, 18055–18063. [Google Scholar] [CrossRef]
- Fang, K.; Wu, T.; Hou, B.; Lin, H. Green synthesis of Ni3S2 nanoparticles from a nontoxic sulfur source for urea electrolysis with high catalytic activity. Electrochim. Acta 2022, 421, 140511. [Google Scholar] [CrossRef]
- Ying, J.; He, Z.; Chen, J.; Xiao, Y.; Yang, X. Elevating the d-Band Center of Ni3S2 Nanosheets by Fe Incorporation to Boost the Oxygen Evolution Reaction. Langmuir 2023, 39, 5375–5383. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, K.; Lin, H.; Li, X.; Chan, H.C.; Yang, L.; Gao, Q. MoS2-Ni3S2 Heteronanorods as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. ACS Catal. 2017, 7, 2357–2366. [Google Scholar] [CrossRef]
- Qin, H.; Zhang, B.; Pan, Y.; Wang, X.; Diao, L.; Chen, J.; Wu, J.; Liu, E.; Sha, J.; Ma, L.; et al. Accelerating water dissociation kinetics on Ni3S2 nanosheets by P-induced electronic modulation. J. Catal. 2020, 381, 493–500. [Google Scholar] [CrossRef]
- Wu, C.; Liu, B.; Wang, J.; Su, Y.; Yan, H.; Ng, C.; Li, C.; Wei, J. 3D structured Mo-doped Ni3S2 nanosheets as efficient dual-electrocatalyst for overall water splitting. Appl. Surf. Sci. 2018, 441, 1024–1033. [Google Scholar] [CrossRef]
- Lu, S.Y.; Li, S.; Jin, M.; Gao, J.; Zhang, Y. Greatly boosting electrochemical hydrogen evolution reaction over Ni3S2 nanosheets rationally decorated by Ni3Sn2S2 quantum dots. Appl. Catal. B 2020, 267, 118675. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, L.; Huang, J.; Peng, L.; Deng, M.; Li, L.; Li, J.; Chen, H.; Wei, Z. Boosting Hydrogen Evolution Reaction of Nickel Sulfides by Introducing Nonmetallic Dopants. J. Phys. Chem. C 2020, 124, 24223–24231. [Google Scholar] [CrossRef]
- Tong, X.; Li, Y.; Pang, N.; Qu, Y.; Yan, C.; Xiong, D.; Xu, S.; Wang, L.; Chu, P.K. Co-doped Ni3S2 porous nanocones as high-performance bifunctional electrocatalysts in water splitting. Chem. Eng. J. 2021, 425, 130455. [Google Scholar] [CrossRef]
- Fu, W.; Zhao, Y.; Mei, J.; Wang, F.; Han, W.; Wang, F.; Xie, E. Honeycomb-like Ni3S2 nanosheet arrays for high-performance hybrid supercapacitors. Electrochim. Acta 2018, 283, 737–743. [Google Scholar] [CrossRef]
- Zhou, W.; Zhao, J.; Guan, J.; Wu, M.; Li, G. Ni3S2 in Situ Grown on Ni Foam Coupled with Nitrogen-Doped Carbon Nanotubes as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction in Alkaline Solution. ACS Omega 2019, 4, 20244–20251. [Google Scholar] [CrossRef]
- Chen, M.; Su, Q.; Kitiphatpiboon, N.; Zhang, J.; Feng, C.; Li, S.; Zhao, Q.; Abudula, A.; Ma, Y.; Guan, G. Heterojunction engineering of Ni3S2/NiS nanowire for electrochemical hydrogen evolution. Fuel 2023, 331, 125794. [Google Scholar] [CrossRef]
- Zhou, W.; Wu, X.; Cao, X.; Huang, X.; Tan, C.; Tian, J.; Liu, H.; Wang, J.; Zhang, H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 2013, 6, 2921–2924. [Google Scholar] [CrossRef]
- Kang, J.S.; Park, M.; Kim, J.; Park, S.H.; Chung, D.Y.; Yu, S.; Kim, J.; Park, J.; Choi, J.; Lee, K.J.; et al. Reactively sputtered nickel nitride as electrocatalytic counter electrode for dye- and quantum dot-sensitized solar cells. Sci. Rep. 2015, 5, 10450. [Google Scholar]
- He, W.D.; Wang, C.G.; Li, H.Q.; Deng, X.L.; Xu, X.J.; Zhai, T.Y. Ultrathin and Porous Ni3S2/CoNi2S4 3D-Network Structure for Superhigh Energy Density Asymmetric Supercapacitors. Adv. Energy Mater. 2017, 7, 1700983. [Google Scholar] [CrossRef]
- Li, J.; Chu, D.; Baker, D.R.; Dong, H.; Jiang, R.; Tran, D.T. Distorted Inverse Spinel Nickel Cobaltite Grown on a MoS2 Plate for Significantly Improved Water Splitting Activity. Chem. Mater. 2019, 31, 7590–7600. [Google Scholar] [CrossRef]
- Stamenkovic, V.R.; Strmcnik, D.; Lopes, P.P.; Markovic, N.M. Energy and fuels from electrochemical interfaces. Nat. Mater. 2017, 16, 57–69. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Huang, B.; Wang, Z.; Long, X.; Qiu, Y.; Hu, J.; Zhou, D.; Lina, H.; Yang, S. Constructing three-dimensional porous Ni/Ni3S2 nano-interfaces for hydrogen evolution electrocatalysis under alkaline conditions. Dalton Trans. 2017, 46, 10700–10706. [Google Scholar] [CrossRef] [PubMed]
- Krishnakumar, S.R.; Sarma, D.D. X-ray photoemission study of NiS2−xSex (x = 0.0–1.2). Phys. Rev. B 2003, 68, 155110. [Google Scholar] [CrossRef]
- Li, D.; Chen, Y.; Zhou, C.; Shi, C.; Xu, Z.; Miao, Z.; Xi, Z.; Han, J. XPS depth profiling of functional materials: Applications of ion beam etching techniques. Mater. Chem. Front. 2024, 8, 715–731. [Google Scholar] [CrossRef]
- Ghods, P.; Isgor, O.B.; Brown, J.R.; Bensebaa, F.; Kingston, D. XPS depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties. Appl. Surface Sci. 2011, 257, 4669–4677. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Chu, D.; Poland, C.; Smith, C.; Nagelli, E.A.; Jaffett, V. XPS Depth Profiling of Surface Restructuring Responsible for Hydrogen Evolution Reaction Activity of Nickel Sulfides in Alkaline Electrolyte. Materials 2025, 18, 549. https://doi.org/10.3390/ma18030549
Li J, Chu D, Poland C, Smith C, Nagelli EA, Jaffett V. XPS Depth Profiling of Surface Restructuring Responsible for Hydrogen Evolution Reaction Activity of Nickel Sulfides in Alkaline Electrolyte. Materials. 2025; 18(3):549. https://doi.org/10.3390/ma18030549
Chicago/Turabian StyleLi, Jiangtian, Deryn Chu, Connor Poland, Cooper Smith, Enoch A. Nagelli, and Victor Jaffett. 2025. "XPS Depth Profiling of Surface Restructuring Responsible for Hydrogen Evolution Reaction Activity of Nickel Sulfides in Alkaline Electrolyte" Materials 18, no. 3: 549. https://doi.org/10.3390/ma18030549
APA StyleLi, J., Chu, D., Poland, C., Smith, C., Nagelli, E. A., & Jaffett, V. (2025). XPS Depth Profiling of Surface Restructuring Responsible for Hydrogen Evolution Reaction Activity of Nickel Sulfides in Alkaline Electrolyte. Materials, 18(3), 549. https://doi.org/10.3390/ma18030549