Improving Corrosion and Wear Resistance of 316L Stainless Steel via In Situ Pure Ti and Ti6Al4V Coatings: Tribocorrosion and Electrochemical Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microstructure and Hardness Characterization
2.3. Tribological and Corrosion Characterization
3. Results and Discussion
3.1. Microstructural Characterization
3.2. Microhardness Results
3.3. Wet-Sliding-Wear Test Results
3.4. Electrochemical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, K.; Batool, S.A.; Farooq, M.T.; Minhas, B.; Manzur, J.; Yasir, M.; Avcu, E.; Rehman, M.A.U. Corrosion, surface, and tribological behavior of electrophoretically deposited polyether ether ketone coatings on 316L stainless steel for orthopedic applications. J. Mech. Behav. Biomed. Mater. 2023, 148, 106188. [Google Scholar] [CrossRef] [PubMed]
- Malkiya Rasalin Prince, R.; Selvakumar, N.; Arulkirubakaran, D.; Christopher Ezhil Singh, S. Lifespan Enhancement of Stainless Steel 316L Artificial Hip Prosthesis by Novel Ti-6Al-4V-2ZrC Coating. J. Mater. Eng. Perform. 2023, 33, 9699–9715. [Google Scholar] [CrossRef]
- Wathanyu, K.; Karuna, T.; Daopiset, S.; Sirivisoot, S.; Surinphong, S. Microstructure, hardness, adhesion and corrosion properties of Ti and TiN films on stainless steel 316L. Key Eng. Mater. 2020, 856, 66–75. [Google Scholar] [CrossRef]
- Murugan, M.; Kandasamy, J.; Arulvel, S.; Riju, R.P. Tribo-Corrosion Behavior of Implants. In Tribo-Behaviors of Biomaterials and their Applications, 2nd ed.; Jawahar, P., Prasun, C., Eds.; CRC Press: Boca Raton, FL, USA, 2024; pp. 71–93. [Google Scholar]
- Mehkri, S.; Abishek, N.R.; Sumanth, K.S.; Rekha, N. Study of the Tribocorrosion occurring at the implant and implant alloy Interface: Dental implant materials. Mater. Today Proc. 2021, 44, 157–165. [Google Scholar] [CrossRef]
- Muratal, O.; Yamanoglu, R. Production of 316l stainless steel used in biomedical applications by powder metallurgy. In Proceedings of the 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science, Istanbul, Turkey, 25 April 2019. [Google Scholar]
- Eliaz, N. Corrosion of metallic biomaterials: A review. Materials 2019, 12, 407. [Google Scholar] [CrossRef] [PubMed]
- Allain, J.P.; Echeverry-Rendón, M. Surface treatment of metallic biomaterials in contact with blood to enhance hemocompatibility. In Hemocompatibility of Biomaterials for Clinical Applications, 2nd ed.; Christopher, A.S., Ed.; Woodhead Publishing: Sawston, UK, 2018; pp. 279–326. [Google Scholar]
- Korei, N.; Solouk, A.; Nazarpak, M.H.; Nouri, A. A review on design characteristics and fabrication methods of metallic cardiovascular stents. Mater. Today Commun. 2022, 31, 103467. [Google Scholar] [CrossRef]
- Thakur, A.; Kumar, A.; Kaya, S.; Marzouki, R.; Zhang, F.; Guo, L. Recent advancements in surface modification, characterization and functionalization for enhancing the biocompatibility and corrosion resistance of biomedical implants. Coatings 2022, 12, 1459. [Google Scholar] [CrossRef]
- Asri, R.I.M.; Harun, W.S.W.; Samykano, M.; Lah, N.A.C.; Ghani, S.A.C.; Tarlochan, F.; Raza, M.R. Corrosion and surface modification on biocompatible metals: A review. Mater. Sci. Eng. C 2017, 77, 1261–1274. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Mitra, I.; Goodman, S.B.; Kumar, M.; Bose, S. Improving biocompatibility for next generation of metallic implants. Prog. Mater. Sci. 2023, 133, 101053. [Google Scholar] [CrossRef]
- Amirtharaj Mosas, K.K.; Chandrasekar, A.R.; Dasan, A.; Pakseresht, A.; Galusek, D. Recent advancements in materials and coatings for biomedical implants. Gels 2022, 8, 323. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshini, B.; Rama, M.; Chetan; Vijayalakshmi, U. Bioactive coating as a surface modification technique for biocompatible metallic implants: A review. J. Asian Ceram. Soc. 2019, 7, 397–406. [Google Scholar] [CrossRef]
- Hanawa, T. Metal ion release from metal implants. Mater. Sci. Eng. C 2004, 24, 745–752. [Google Scholar] [CrossRef]
- Olsson, C.O.; Landolt, D. Passive films on stainless steels—Chemistry, structure and growth. Electrochim. Acta. 2003, 48, 1093–1104. [Google Scholar] [CrossRef]
- Shukla, K.; Rane, R.; Alphonsa, J.; Maity, P.; Mukherjee, S. Structural, mechanical and corrosion resistance properties of Ti/TiN bilayers deposited by magnetron sputtering on AISI 316L. Surf. Coat. Technol. 2017, 324, 167–174. [Google Scholar] [CrossRef]
- Jin, X.; Gao, L.; Liu, E.; Yu, F.; Shu, X.; Wang, H. Microstructure, corrosion and tribological and antibacterial properties of Ti–Cu coated stainless steel. J. Mech. Behav. Biomed. Mater. 2015, 50, 23–32. [Google Scholar] [CrossRef]
- Wathanyu, K.; Tuchinda, K.; Daopiset, S.; Sirivisoot, S. Corrosion resistance and biocompatibility of cold-sprayed titanium on 316L stainless steel. Surf. Coat. Technol. 2022, 445, 128721. [Google Scholar] [CrossRef]
- Henry, P.; Takadoum, J.; Bercot, P. Depassivation of some metals by sliding friction. Corros. Sci. 2011, 53, 320–328. [Google Scholar] [CrossRef]
- Alontseva, D.; Safarova, Y.; Voinarovych, S.; Obrosov, A.; Yamanoglu, R.; Khoshnaw, F.; Weiß, S.; Yavuz, H.I. Biocompatibility and corrosion of microplasma-sprayed titanium and tantalum coatings versus titanium alloy. Coatings 2024, 14, 206. [Google Scholar] [CrossRef]
- Kobayashi, E.; Ando, M.; Tsutsumi, Y.; Doi, H.; Yoneyama, T.; Kobayashi, M.; Hanawa, T. Inhibition effect of zirconium coating on calcium phosphate precipitation of titanium to avoid assimilation with bone. Mater. Trans. 2007, 48, 301–306. [Google Scholar] [CrossRef]
- Sotniczuk, A.; Gilbert, J.L.; Liu, Y.; Matczuk, M.; Chromiński, W.; Kalita, D.; Garbacz, H. Corrosion resistance of β-phase titanium alloys under simulated inflammatory conditions: Exploring the relevance of biocompatible alloying elements. Corros. Sci. 2023, 220, 111271. [Google Scholar] [CrossRef]
- Bordbar-Khiabani, A.; Gasik, M. Electrochemical and biological characterization of Ti–Nb–Zr–Si alloy for orthopedic applications. Sci. Rep. 2023, 13, 2312. [Google Scholar] [CrossRef]
- Li, B.Q.; Xie, R.Z.; Lu, X. Microstructure, mechanical property and corrosion behavior of porous Ti–Ta–Nb–Zr. Bioact. Mater. 2020, 5, 564–568. [Google Scholar] [CrossRef] [PubMed]
- Breme, H.; Biehl, V.; Reger, N.; Gawalt, E. Metallic biomaterials: Introduction. In Handbook of Biomaterial Properties, 2nd ed.; William, M., Jonathan, B., Eds.; Springer: Berlin, Germany, 2016; pp. 151–158. [Google Scholar]
- Milošev, I.; Metikoš-Huković, M.; Strehblow, H.H. Passive film on orthopaedic TiAlV alloy formed in physiological solution investigated by X-ray photoelectron spectroscopy. Biomaterials 2000, 21, 2103–2113. [Google Scholar] [CrossRef]
- Turnbull, A.; Ryan, M.; Willetts, A.; Zhou, S. Corrosion and electrochemical behaviour of 316L stainless steel in acetic acid solutions. Corros. Sci. 2003, 45, 1051–1072. [Google Scholar] [CrossRef]
- Peng, Y.; Peng, J.; Wang, Z.; Xiao, Y.; Qiu, X. Diamond-like carbon coatings in the biomedical field: Properties, applications and future development. Coatings 2022, 12, 1088. [Google Scholar] [CrossRef]
- Roy, R.K.; Lee, K.R. Biomedical applications of diamond-like carbon coatings: A review. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 83, 72–84. [Google Scholar] [CrossRef]
- Airoldi, F.; Colombo, A.; Tavano, D.; Stankovic, G.; Klugmann, S.; Paolillo, V.; Di Mario, C. Comparison of diamond-like carbon-coated stents versus uncoated stainless steel stents in coronary artery disease. Am. J. Cardiol. 2004, 93, 474–477. [Google Scholar] [CrossRef]
- Sousa, V.F.; Silva, F.J. Recent advances in turning processes using coated tools-A comprehensive review. Metals 2020, 10, 170. [Google Scholar] [CrossRef]
- Zhang, T.F.; Wu, B.J.; Deng, Q.Y.; Huang, W.J.; Huang, N.; Leng, Y.X. Effect of a hydrogenated interface on the wear behavior of a diamond-like carbon film in a water environment. Diam. Relat. Mater. 2017, 74, 53–58. [Google Scholar] [CrossRef]
- Madaoui, N.; Saoula, N.; Zaid, B.; Saidi, D.; Ahmed, A.S. Structural, mechanical and electrochemical comparison of TiN and TiCN coatings on XC48 steel substrates in NaCl 3.5% water solution. Appl. Surf. Sci. 2014, 312, 134–138. [Google Scholar] [CrossRef]
- Panjan, P.; Čekada, M.; Panjan, M.; Kek-Merl, D. Growth defects in PVD hard coatings. Vacuum 2009, 84, 209–214. [Google Scholar] [CrossRef]
- Yang, C.; Jiang, B.; Liu, Z.; Hao, J.; Feng, L. Structure and properties of Ti films deposited by DC magnetron sputtering, pulsed dc magnetron sputtering and cathodic arc evaporation. Surf. Coat. Technol. 2016, 304, 51–56. [Google Scholar] [CrossRef]
- Palani, S.; Michael, E.G.; Desta, M.; Atnaw, S.M.; Banoth, R.; Kolanji, S. Physical Vapor Deposition Coating Process in Biomedical Applications: An Overview. In Sustainable Advanced Manufacturing and Materials Processing; CRC Press: Boca Raton, FL, USA, 2022; pp. 67–93. [Google Scholar]
- Ou, Y.X.; Wang, H.Q.; Ouyang, X.; Zhao, Y.Y.; Zhou, Q.; Luo, C.W.; Zhang, S. Recent advances and strategies for high-performance coatings. Prog. Mater. Sci. 2023, 136, 101125. [Google Scholar] [CrossRef]
- Okokpujie, I.P.; Tartibu, L.K.; Musa-Basheer, H.O.; Adeoye, A.O.M. Effect of coatings on mechanical, corrosion and tribological properties of industrial materials: A comprehensive review. J. Bio-Tribo-Corros. 2024, 10, 2. [Google Scholar] [CrossRef]
- Khoshnaw, F.; Yamanoglu, R.; Basci, U.G.; Muratal, O. Pressure assisted bonding process of stainless steel on titanium alloy using powder metallurgy. Mater. Chem. Phys. 2021, 259, 124015. [Google Scholar] [CrossRef]
- Das, B.; Srivastava, S.K.; Manna, I.; Majumdar, J.D. Mechanically tailored surface of titanium based alloy (Ti6Al4V) by laser surface treatment. Surf. Coat. Technol. 2024, 479, 130560. [Google Scholar] [CrossRef]
- Yamanoglu, R.; Petkoska, A.T.; Yavuz, H.I.; Uzuner, H.; Drienovsky, M.; Nasov, I.; Khoshnaw, F. Impact of Cu and Ce on the Electrochemical, Antibacterial, and Wear Properties of 316 L Stainless Steel: Insights for Biomedical Applications. Mater. Today Commun. 2024, 40, 109442. [Google Scholar] [CrossRef]
- Mishra, H.; Satyanarayana, D.V.V.; Nandy, T.K.; Sagar, P.K. Effect of trace impurities on the creep behavior of a near α titanium alloy. Scr. Mater. 2008, 59, 591–594. [Google Scholar] [CrossRef]
- Song, M.; Guo, J.; Yang, Y.; Geng, K.; Xiang, M.; Zhu, Q.; Zhao, H. Fe2Ti interlayer for improved adhesion strength and corrosion resistance of TiN coating on stainless steel 316L. Appl. Surf. Sci. 2020, 504, 144483. [Google Scholar] [CrossRef]
- Auger, J.M.; Cotton, D.; Nouveau, C.; Besnard, A.; Bernard, F.; Ardigo-Besnard, M.R.; Marcelot, C. Comparison of thermal diffusion and interfacial reactions for bulk and sputtered titanium on 316L stainless steel. Mater. Chem. Phys. 2023, 306, 128013. [Google Scholar] [CrossRef]
- Marker, M.C.; Duarte, L.I.; Leinenbach, C.; Richter, K.W. Characterization of the Fe-rich corner of Al–Fe–Si–Ti. Intermetallics 2013, 39, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Zeng, Q.; Oganov, A.R.; Frapper, G.; Zhang, L. Phase stability, chemical bonding and mechanical properties of titanium nitrides: A first-principles study. Phys. Chem. Chem. Phys. 2015, 17, 11763–11769. [Google Scholar] [CrossRef]
- Lutton, K.; Blades, W.H.; Scully, J.R.; Reinke, P. Influence of chloride on nanoscale electrochemical passivation processes. J. Phys. Chem. C 2020, 124, 9289–9304. [Google Scholar] [CrossRef]
- Talha, M.; Ma, Y.; Kumar, P.; Lin, Y.; Singh, A. Role of protein adsorption in the bio corrosion of metallic implants—A review. Colloids Surf. B Biointerfaces 2019, 176, 494–506. [Google Scholar] [CrossRef]
- Spikes, H.A. Triboelectrochemistry: Influence of applied electrical potentials on friction and wear of lubricated contacts. Tribol. Let. 2020, 68, 90. [Google Scholar] [CrossRef]
- Jun, C.; Zhang, Q.; Li, Q.A.; Fu, S.L.; Wang, J.Z. Corrosion and tribocorrosion behaviors of AISI 316 stainless steel and Ti6Al4V alloys in artificial seawater. Trans. Nonferrous Met. Soc. China 2014, 24, 1022–1031. [Google Scholar]
- Pandey, A.K.; Kumar, A.; Kumar, R.; Gautam, R.K.; Behera, C.K. Tribological performance of SS 316L, commercially pure titanium, and Ti6Al4V in different solutions for biomedical applications. Mater. Today Proc. 2023, 78, A1–A8. [Google Scholar] [CrossRef]
- Miura-Fujiwara, E.; Okumura, T.; Yamasaki, T. Frictional and wear behavior of commercially pure ti, ti-6al-7nb, and sus316l stainless steel in artificial saliva at 310 K. Mater. Trans. 2015, 56, 1648–1657. [Google Scholar] [CrossRef]
- Ruggiero, A.; De Stefano, M. Experimental investigation on the bio-tribocorrosive behavior of Ti6Al4V alloy and 316 L stainless steel in two biological solutions. Tribol. Int. 2023, 190, 109033. [Google Scholar] [CrossRef]
- Mohammed, M.T.; Khan, Z.A.; Siddiquee, A.N. Surface modifications of titanium materials for developing corrosion behavior in human body environment: A review. Procedia Mater. Sci. 2014, 6, 1610–1618. [Google Scholar] [CrossRef]
- Kim, J.; Pan, H. Effects of magnesium alloy corrosion on biological response–Perspectives of metal-cell interaction. Prog. Mater. Sci. 2023, 133, 101039. [Google Scholar] [CrossRef]
- Khatod, M.; Cafri, G.; Inacio, M.C.; Schepps, A.L.; Paxton, E.W.; Bini, S.A. Revision total hip arthoplasty: Factors associated with re-revision surgery. J. Bone Jt. Surg. 2015, 97, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Bayliss, L.E.; Culliford, D.; Monk, A.P.; Glyn-Jones, S.; Prieto-Alhambra, D.; Judge, A.; Price, A.J. The effect of patient age at intervention on risk of implant revision after total replacement of the hip or knee: A population-based cohort study. Lancet 2017, 389, 1424–1430. [Google Scholar] [CrossRef] [PubMed]
- Carquigny, S.; Takadoum, J.; Ivanescu, S. Corrosion and tribocorrosion study of 316L steel, Ti–6Al–4V and Ti–10Zr–10Nb–5Ta. Tribol. Mater. Surf. Interfaces 2019, 13, 112–119. [Google Scholar] [CrossRef]
- Torres-Islas, A.; Bedolla-Jacuinde, A.; Del-Pozo, A.; González-Loyola, C.; Valenzo-Macias, A.; Torres-Macias, D.; Martinez, H. Corrosion behavior of Mg–Bi–Ca alloys prepared via high vacuum melting as biodegradable materials in Hank solution. Int. J. Electrochem. Sci. 2024, 19, 100692. [Google Scholar] [CrossRef]
- Giray, D.; Sönmez, M.Ş.; Yamanoglu, R.; Yavuz, H.I.; Muratal, O. Characterization of corrosion products formed in high-strength dual-phase steels under an accelerated corrosion test. Eng. Sci. Technol. Int. J. 2024, 57, 101796. [Google Scholar] [CrossRef]
- Eliaz, N.; Gileadi, E. Physical Electrochemistry: Fundamentals, Techniques, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Oje, A.M.; Ogwu, A.A.; Oje, A.I.; Tsendzughul, N.; Rahman, S.U. A comparative study of the corrosion and ion release behaviour of chromium oxide coatings exposed to saline, Ringer’s and Hank’s physiological solutions. Corros. Sci. 2020, 167, 108533. [Google Scholar] [CrossRef]
- Ugwu, S.O.; Apte, S.P. The effect of buffers on protein conformational stability. Pharma. Technol. 2004, 28, 86–109. [Google Scholar]
- Collings, E.W. Physical Metallurgy of Titanium Alloys; ASM International: Detroit, MI, USA, 1988. [Google Scholar]
- Pouilleau, J.; Devilliers, D.; Garrido, F.; Durand-Vidal, S.; Mahé, E. Structure and composition of passive titanium oxide films. Mater. Sci. Eng. B 1997, 47, 235–243. [Google Scholar] [CrossRef]
- Medvids, A.; Onufrijevs, P.; Kaupužs, J.; Eglitis, R.; Padgurskas, J.; Zunda, A.; Varnagiris, S. Anatase or rutile TiO2 nanolayer formation on Ti substrates by laser radiation: Mechanical, photocatalytic and antibacterial properties. Opt. Laser Technol. 2021, 138, 106898. [Google Scholar] [CrossRef]
- Gai, X.; Bai, Y.; Li, J.; Li, S.; Hou, W.; Hao, Y.; Misra, R.D.K. Electrochemical behaviour of passive film formed on the surface of Ti-6Al-4V alloys fabricated by electron beam melting. Corros. Sci. 2018, 145, 80–89. [Google Scholar] [CrossRef]
- Shah, F.A.; Trobos, M.; Thomsen, P.; Palmquist, A. Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants—Is one truly better than the other? Mater. Sci. Eng. C 2016, 62, 960–966. [Google Scholar] [CrossRef] [PubMed]
- Charlena, C.; Kemala, T.; Ravena, R. Coating of Nanotube Ti6Al4V Alloy with Hydroxyapatite-Chitosan-Polyvinyl Alcohol Composite. Indones. J. Fundamen. App. Chem. 2022, 7, 58–67. [Google Scholar] [CrossRef]
- Noumbissi, S.; Scarano, A.; Gupta, S. A literature review study on atomic ions dissolution of titanium and its alloys in implant dentistry. Materials 2019, 12, 368. [Google Scholar] [CrossRef]
- Liu, H.; He, J.; Jin, Z.; Liu, H. Pitting corrosion behavior and mechanism of 316L stainless steel induced by marine fungal extracellular polymeric substances. Corros. Sci. 2023, 224, 111485. [Google Scholar] [CrossRef]
- Yin, Z.F.; Feng, Y.R.; Zhao, W.Z.; Yin, C.X.; Tian, W. Pitting corrosion behaviour of 316L stainless steel in chloride solution with acetic acid and CO2. Corros. Eng. Sci. Technol. 2011, 46, 56–63. [Google Scholar] [CrossRef]
%0.9 NaCl | Hanks’ Solution | |||||
---|---|---|---|---|---|---|
Sample | Ecorr [mV] | Icorr [µA/cm2] | Rp [ohm] | Ecorr [mV] | Icorr [µA/cm2] | Rp [ohm] |
316L | −411 | 18.2 | 572 | −430 | 16.3 | 712 |
316L/Pure Ti | −211 | 1.1 | 3289 | −438 | 2.8 | 2589 |
316L/Ti6Al4V | −366 | 7.2 | 1256 | −373 | 10.2 | 847 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alontseva, D.; Yavuz, H.İ.; Azamatov, B.; Khoshnaw, F.; Safarova, Y.; Dogadkin, D.; Avcu, E.; Yamanoglu, R. Improving Corrosion and Wear Resistance of 316L Stainless Steel via In Situ Pure Ti and Ti6Al4V Coatings: Tribocorrosion and Electrochemical Analysis. Materials 2025, 18, 553. https://doi.org/10.3390/ma18030553
Alontseva D, Yavuz Hİ, Azamatov B, Khoshnaw F, Safarova Y, Dogadkin D, Avcu E, Yamanoglu R. Improving Corrosion and Wear Resistance of 316L Stainless Steel via In Situ Pure Ti and Ti6Al4V Coatings: Tribocorrosion and Electrochemical Analysis. Materials. 2025; 18(3):553. https://doi.org/10.3390/ma18030553
Chicago/Turabian StyleAlontseva, Darya, Hasan İsmail Yavuz, Bagdat Azamatov, Fuad Khoshnaw, Yuliya Safarova (Yantsen), Dmitriy Dogadkin, Egemen Avcu, and Ridvan Yamanoglu. 2025. "Improving Corrosion and Wear Resistance of 316L Stainless Steel via In Situ Pure Ti and Ti6Al4V Coatings: Tribocorrosion and Electrochemical Analysis" Materials 18, no. 3: 553. https://doi.org/10.3390/ma18030553
APA StyleAlontseva, D., Yavuz, H. İ., Azamatov, B., Khoshnaw, F., Safarova, Y., Dogadkin, D., Avcu, E., & Yamanoglu, R. (2025). Improving Corrosion and Wear Resistance of 316L Stainless Steel via In Situ Pure Ti and Ti6Al4V Coatings: Tribocorrosion and Electrochemical Analysis. Materials, 18(3), 553. https://doi.org/10.3390/ma18030553