Comparison of the Performance Parameters of BioHPP® and Biocetal® Used in the Production of Prosthetic Restorations in Dentistry—Part I: Mechanical Tests: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. FTIR Analysis
2.2. Hardness Test
2.3. Impact Strength Test
2.4. Tensile Strength Test
2.5. Flexural Strength Test
2.6. Abrasive Wear Testing
2.7. Statistical Analysis
3. Results
3.1. FTIR Analysis Results
3.2. Shore’s Hardness Test Evaluation
3.3. Impact Strength Test Evaluation
3.4. Tensile Strength Test Evaluation
3.5. Flexural Strength Test Evaluation
3.6. Abrasive Wear Test Evaluation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galindo-Moreno, P.; Lopez-Chaichio, L.; Padial-Molina, M.; Avila-Ortiz, G.; O’valle, F.; Ravida, A.; Catena, A. The impact of tooth loss on cognitive function. Clin. Oral Investig. 2022, 26, 3493–3500. [Google Scholar] [CrossRef]
- Saeed, F.; Muhammad, N.; Khan, A.S.; Sharif, F.; Rahim, A.; Ahmad, P.; Irfan, M. Prosthodontics dental materials: From conventional to unconventional. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 106, 110167. [Google Scholar] [CrossRef] [PubMed]
- Fueki, K.; Ohkubo, C.; Yatabe, M.; Arakawa, I.; Arita, M.; Ino, S.; Kanamori, T.; Kawai, Y.; Kawara, M.; Komiyama, O.; et al. Clinical application of removable partial dentures using thermoplastic resin-part I: Definition and indication of non-metal clasp dentures. J. Prosthodont. Res. 2014, 58, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, K.P.; Yin, Q.; Collins-Wildman, D.L.; Tao, M.; Geletii, Y.V.; Musaev, D.G.; Lian, T.; Hill, C.L. Multi-Tasking POM Systems. Front. Chem. 2018, 6, 365. [Google Scholar] [CrossRef]
- Ramadan, R.; Elsherbeeny, Y.; Thabet, Y.; Kandil, B.; Ghali, R. Retention of a telescopic overdenture on customized abutments after the simulation of 1 year in function. Dent. Med. Probl. 2021, 58, 201–206. [Google Scholar] [CrossRef]
- Gray, D.; Barraclough, O.; Ali, Z.; Nattress, B. Modern partial dentures—Part 2: A review of novel metal-free materials and innovations in polymers. Br. Dent. J. 2021, 230, 813–818. [Google Scholar] [CrossRef] [PubMed]
- Fister, J.S.; Memoli, W.A.; Galante, J.O.; Rosteker, W.; Urban, M.R. Biocompatibility of Derlin 150: A creep—Resistant polimer for total joint prostheses. J. Biomed. Mater. Res. 1985, 19, 519–533. [Google Scholar] [CrossRef]
- Maeda, M. Experimental studies on polyacetal composites for joint prosthesis. Nippon. Seikeigeka Gakkai Zasshi 1984, 88, 919–936. [Google Scholar]
- Kayser, M.; Seiler, H. Case report on the partial replacement of the clavicle using a polyacetal resin prosthesis. Unfallchirurg 1985, 88, 227–230. [Google Scholar] [PubMed]
- Kirsch, A.; Ackermann, K.L. The IMZ osteointegrated implant system. Dent. Clin. N. Am. 1989, 33, 733–791. [Google Scholar] [CrossRef] [PubMed]
- Lagemann, U.; Heinzelmann, I. Azetal—Ein innovativer Werkstoff. Quintessenz Zahntech. 1997, 23, 797–804. [Google Scholar]
- Rutkowski, A. Acetal—Estetyczna alternatywa rozwiązań protetycznych. Nowocz. Tech. Dent. 2007, 4, 35–38. [Google Scholar]
- Sikorska—Bochińska, J.; Urbanek, R. Elastyczne i sprężyste tworzywo na protezy ruchome i stałe w aspekcie alergii kontaktowej. Twój Prz. Stom. 2005, 5, 32–34. [Google Scholar]
- Ardelean, L.; Bortun, C.M.; Podariu, A.C. Thermoplastic Resins used in Dentistry. In Thermoplastic Elastomers—Synthesis and Applications; Das, C.K., Ed.; IntechOpen: London, UK, 2015. [Google Scholar] [CrossRef]
- Staniland, P.; Wilde, C.; Bottino, F.; Di Pasquale, G.; Pollicino, A.; Recca, A. Synthesis, characterization and study of the thermal properties of new polyarylene ethers. Polymer 1992, 33, 1976–1981. [Google Scholar] [CrossRef]
- Kurtz, S.M.; Devine, J.N. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007, 28, 4845–4869. [Google Scholar] [CrossRef]
- Green, S. A polyaryletherketone biomaterial for use in medical implant applications. Chem. Artic. News 2015, 5, 1–9. [Google Scholar]
- Maloo, L.M.; Toshniwal, S.H.; Reche, A.; Paul, P.; Wanjari, M.B. A Sneak Peek Toward Polyaryletherketone (PAEK) Polymer: A Review. Cureus 2022, 14, e31042. [Google Scholar] [CrossRef] [PubMed]
- Alexakou, E.; Damanaki, M.; Zoidis, P.; Bakiri, E.; Mouzis, N.; Smidt, G.; Kourtis, S. PEEK High Performance Polymers: A Review of Properties and Clinical Applications in Prosthodontics and Restorative Dentistry. Eur. J. Prosthodont. Restor. Dent. 2019, 27, 113–121. [Google Scholar]
- Monich, P.R.; Berti, F.V.; Porto, L.M.; Henriques, B.; de Oliveira, A.P.N.; Fredel, M.C.; Souza, J.C. Physicochemical and biological assessment of PEEK composites embedding natural amorphous silica fibers for biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 79, 354–362. [Google Scholar] [CrossRef]
- Stober, E.J.; Seferis, J.C.; Keenan, J.D. Characterization and exposure of polyetheretherketone (PEEK) to fluid environments. Polymer 1984, 25, 1845–1852. [Google Scholar] [CrossRef]
- Searle, O.B.; Pfeiffer, R.H. Victrex poly(ethersulfone) (PES) and Victrex poly(etheretherketone) (PEEK). Polym. Eng. Sci. 1985, 25, 474–476. [Google Scholar] [CrossRef]
- Boinard, E.; Pethrick, R.A.; McFarlane, C.J. The influence of thermal history on the dynamic mechanical and dielectric studies of polyetheretherketone exposed to water and brine. Polymer 2000, 41, 1063–1076. [Google Scholar] [CrossRef]
- Xin, H.; Shepherd, D.; Dearn, K. Strength of poly-etherether-ketone: Effects of sterilisation and thermal ageing. Polym. Test. 2013, 32, 1001–1005. [Google Scholar] [CrossRef]
- Schwitalla, A.; Muller, W.D. PEEK dental implants: A review of the literature. J. Oral Implantol. 2013, 39, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Kizuki, T.; Matsushita, T.; Kokubo, T. Apatite-forming PEEK with TiO2 surface layer coating. J. Mater. Sci. Mater. Med. 2015, 26, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Gonzalez, D.; Rusinek, A.; Jankowiak, T.; Arias, A. Mechanical impact behavior of polyether-ether-ketone (PEEK). Compos. Struct. 2015, 124, 88–99. [Google Scholar] [CrossRef]
- Cheol-Min, H.; Eun-Jung, L.; Hyoun-Ee, K.; Young-Hag, K.; Keung, N.K.; Yoon, H.; Sung-Uk, K. The electron beam deposition of titanium on polyethereethereketone (PEEK) and resulting enhanced biological properties. Biomaterials 2010, 31, 3465–3470. [Google Scholar]
- Dua, R.; Rashad, Z.; Spears, J.; Dunn, G.; Maxwell, M. Applications of 3D-Printed PEEK via Fused Filament Fabrication: A Systematic Review. Polymers 2021, 13, 4046. [Google Scholar] [CrossRef]
- Toth, J.M.; Wang, M.; Estes, B.T.; Scifert, J.L.; Seim, I.I.I.H.B.; Turner, A.S. Polyetheretherketone as a biomaterial for spinal applications. Biomaterials 2006, 27, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.T.; Koak, J.Y.; Lim, Y.J.; Kim, S.K.; Kwon, H.B.; Kim, M.J. Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Meningaud, J.P.; Spahn, F.; Donsimoni, J.M. After Titanium, Peek? Rev. Stomatol. Chir. Maxillofac. 2012, 113, 407–410. [Google Scholar] [PubMed]
- Godara, A.; Raabe, D.; Green, S. The influence of sterilization processes on the micromechanical properties of carbon fiber-reinforced PEEK composites for bone implant applications. Acta Biomater. 2007, 3, 209–220. [Google Scholar] [CrossRef]
- Mishra, S.; Chowdhary, R. PEEK Materials as an Alternative to Titanium in Dental Implants: A Systematic Review. Clin. Implant. Dent. Relat. Res. 2019, 21, 208–222. [Google Scholar] [CrossRef]
- Najeeb, S.; Bds, Z.K.; Bds, S.Z.; Bds, M.S. Bioactivity Osseointegration of PEEK Are Inferior to Those of Titanium: A Systematic Review. J. Oral Implantol. 2013, 42, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Popa, D.; Constantiniuc, M.; Earar, K.; Mercut, V.; Scrieciu, M.; Buduru, S.; Luca, E.; Negucioiu, M. Review of Different Materials that can be CAD/CAM Processed Description, chemical composition, indications in dentistry areas. Rev. Chim. 2019, 70, 4029–4034. [Google Scholar] [CrossRef]
- Reyal, S.S.; Rajamani, V.K.; Gowda, E.M.; Shashidhar, M.P. Comparative prospective clinical evaluation of computer aided design/computer aided manufacturing milled BioHPP PEEK inlays and Zirconia inlays. J. Indian. Prosthodont. Soc. 2021, 21, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Hallmann, L.; Mehl, A.; Sereno, N.; Hämmerle, C.H. The improvement of adhesive properties of PEEK through different pre-treatments. Appl. Surf. Sci. 2012, 258, 7213–7218. [Google Scholar] [CrossRef]
- Pacurar, M.; Bechir, E.S.; Suciu, M.; Bechir, A.; Biris, C.I.; Mola, F.C.; Gioga, C.; Dascalu, I.T.; Ormenisan, A. The Benefits of Polyether-Ether-Ketone Polymers in Partial Edentulous Patients. Mater. Plast. 2016, 53, 657–660. [Google Scholar]
- Iyer, R.S.; Suchitra, S.R.; Coutinho, A.C.; Priya, A. BioHPP: Properties and applications in prosthodontics a review. J. Res. Dent. 2019, 7, 72–76. [Google Scholar] [CrossRef]
- Reda, R.; Zanza, A.; Galli, M.; De Biase, A.; Testarelli, L.; Di Nardo, D. Applications and Clinical Behavior of BioHPP in Prosthetic Dentistry: A Short Review. J. Compos. Sci. 2022, 6, 90. [Google Scholar] [CrossRef]
- Georgiev, J.; Vlahova, A.; Kissov, H.; Aleksandrov, S.; Kazakova, R. Possible application of BioHPP in prosthetic dentistry: A literature review. J. IMAB 2018, 24, 1896–1898. [Google Scholar] [CrossRef]
- ISO 37:2005; Rubber, Vulcanized or Thermoplastic—Determination of Tensile Stress-Strain Properties. ISO: Geneva, Switzerland, 2005.
- ISO 868:2003; Plastics and Ebonite—Determination of Indentation Hardness by Means of a Durometer (Shore Hardness). ISO: Geneva, Switzerland, 2005.
- Baeana, L.M.; Zuleta, E.C.; Calderon, J.A. Evaluation of the Stability of Polymeric Materials Exposed to Palm Biodiesel and Biodiesel–Organic Acid Blends. Polymers 2018, 10, 511. [Google Scholar] [CrossRef]
- Lim, K.; Hayat, M.D.; Jena, K.D.; Zhang, W.; Cao, P. On amine treated polyoxymethylene (POM) blends with low formaldehyde emission for metal injection moulding (MIM). J. Mater. Sci. 2022, 57, 15160–15170. [Google Scholar] [CrossRef]
- Kwon, G.; Kim, H.; Gupta KCh Kang, I.-H. Enhanced Tissue Compatibility of Polyetheretherketone Disks by Dopamine-Mediated Protein Immobilization. Macromol. Res. 2018, 2, 128–138. [Google Scholar] [CrossRef]
- Gaitanelis, D.; Worrall Ch Kazilas, M. Detecting, characterising and assessing PEEK’s and CF-PEEK’s thermal degradation in rapid high-temperature processing. Polym. Degrad. Stab. 2022, 204, 110096. [Google Scholar] [CrossRef]
- Balestra, D.; Lowther, M.; Goracci, C.; Mandurino, M.; Cortili, S.; Paolone, G.; Louca, C.; Vichi, A. 3D Printed Materials for Permanent Restorations in Indirect Restorative and Prosthetic Dentistry: A Critical Review of the Literature. Materials 2024, 17, 1380. [Google Scholar] [CrossRef]
- Lin, T.W.; Corvelli, A.A.; Frondoza, C.G.; Roberts, J.C.; Hungerford, D.S. Glass peek composite promotes proliferation and osteocalcin production of human osteoblastic cells. J. Biomed. Mater. Res. 1997, 36, 137–144. [Google Scholar] [CrossRef]
- Steinberg, E.L.; Rath, E.; Shlaifer, A.; Chechik, O.; Maman, E.; Salai, M. Carbon fiber reinforced PEEK Optima—A composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. J. Mech. Behav. Biomed. Mater. 2013, 17, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Jockisch, K.A.; Brown, S.A.; Bauer, T.W.; Merritt, K. Biological response to chopped-carbon-fiber-reinforced peek. J. Biomed. Mater. Res. 1992, 26, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Sandler, J.; Werner, P.; Shaffer, M.S.; Demchuk, V.; Altstädt, V.; Windle, A.H. Carbon-nanofibre-reinforced poli(ether ether ketone) composites. Compos. Part. A Appl. Sci. Manuf. 2002, 33, 1033–1039. [Google Scholar] [CrossRef]
- Schwitalla, A.D.; Spintig, T.; Kallage, I.; Müller, W.D. Flexural behavior of PEEK materials for dental application. Dent. Mater. 2015, 11, 1377–1384. [Google Scholar] [CrossRef]
Sample: Biocetal | Counter Sample: Al2O3 |
E-modulus ~3 GPa; Poisson’s ratio 0.35; Radius of curvature: 0 for a flat sample | E-modulus ~370 GPa; Poisson’s ratio 0.22; Radius of curvature: 3 mm (0.003 m) for a ball diameter of 6 mm |
For 1N load—average contact pressure: 0.04 GPa (40 MPa), max contact pressure 0.06 GPa (60 MPa) For a 2N load—average contact pressure: 0.05 GPa (50 MPa), max contact pressure 0.08 GPa (80 MPa) Maximum tensile stress 67—70 MPa | |
Sample: BioHPP | Counter Sample: Al2O3 |
E-modulus ~5.5 GPa; Poisson’s ratio 0.37; Radius of curvature: 0 for a flat sample | E-modulus ~370 GPa; Poisson’s ratio 0.22; Radius of curvature: 3 mm (0.003 m) for a ball diameter of 6 mm |
For a 1 N load—average contact pressure: 0.06 GPa (60 MPa), max contact pressure 0.09 GPa (90 MPa) For a 2 N load—average contact pressure: 0.08 GPa (80 MPa), max contact pressure 0.12 GPa (120 MPa) Stresses at the yield point 85–87 MPa; Maximum stresses not greater than 90 MPa |
Material | Medium Hardness [ShD] | Medium Impact Strength [kJ/m2] |
---|---|---|
Biocetal | 78 ± 1 | 147 ± 14 |
BioHPP | 82 ± 2 | No breakage |
Material | Relative Elongation at Yield Point [%] | Stress at Yield Point [MPa] | Stress at Break [MPa] | Relative Elongation at Break [%] | Elastic Modulus (0.05–0.25) [GPa] |
---|---|---|---|---|---|
Biocetal | 11.7 ± 0.3 | 67.0 ± 0.4 | 57.7 ± 2.9 | 45.4 ± 14.1 | 3.11 ± 0.14 |
BioHPP | 4.04 ± 0.13 | 84.8 ± 1.9 | 69.1 ± 16 | 87.3 ± 7.1 | 5.34 ± 0.32 |
Material | Maximum Tension [MPa] | Relative Strain at Maximum Stress [%] |
---|---|---|
Biocetal | 93 ± 0.3 | 7.73 ± 0.14 |
BioHPP | 137.00 ± 2.09 | 6.29 ± 0.217 |
Material and Test Conditions | Biocetal “Dry” | Biocetal “Wet” | BioHPP “Dry” | BioHPP “Wet” |
---|---|---|---|---|
V—wear volume [m3] | 2.3514 × 10−11 | 1.5075 × 10−11 | 6.9887 × 10−11 | 6.2652 × 10−13 |
K—wear rate [m3/Nm] | 2.3514 × 10−15 | 1.5075 × 10−15 | 6.9887 × 10−15 | 6.2652 × 10−17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalski, R.; Frąckiewicz, W.; Kwiatkowska, M.; Światłowska-Bajzert, M.; Sobolewska, E. Comparison of the Performance Parameters of BioHPP® and Biocetal® Used in the Production of Prosthetic Restorations in Dentistry—Part I: Mechanical Tests: An In Vitro Study. Materials 2025, 18, 561. https://doi.org/10.3390/ma18030561
Kowalski R, Frąckiewicz W, Kwiatkowska M, Światłowska-Bajzert M, Sobolewska E. Comparison of the Performance Parameters of BioHPP® and Biocetal® Used in the Production of Prosthetic Restorations in Dentistry—Part I: Mechanical Tests: An In Vitro Study. Materials. 2025; 18(3):561. https://doi.org/10.3390/ma18030561
Chicago/Turabian StyleKowalski, Robert, Wojciech Frąckiewicz, Magdalena Kwiatkowska, Małgorzata Światłowska-Bajzert, and Ewa Sobolewska. 2025. "Comparison of the Performance Parameters of BioHPP® and Biocetal® Used in the Production of Prosthetic Restorations in Dentistry—Part I: Mechanical Tests: An In Vitro Study" Materials 18, no. 3: 561. https://doi.org/10.3390/ma18030561
APA StyleKowalski, R., Frąckiewicz, W., Kwiatkowska, M., Światłowska-Bajzert, M., & Sobolewska, E. (2025). Comparison of the Performance Parameters of BioHPP® and Biocetal® Used in the Production of Prosthetic Restorations in Dentistry—Part I: Mechanical Tests: An In Vitro Study. Materials, 18(3), 561. https://doi.org/10.3390/ma18030561