Mechanical Properties and Microstructure Evolution of Al-Li Alloy Under the PHF Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. PHF Process
2.3. Microstructure Characterization Methods
3. Results and Discussion
3.1. Precipitation Behavior of Strengthening Phases by the DSC Analysis
3.2. Mechanical Properties
3.3. Dislocation Density by the XRD Analysis
3.4. Microstructure Observation by the EBSD and TEM
4. Conclusions
- (1)
- Under the PHF process parameters of “7% pre-strain + 80 °C/16 h pre-aging + 250 °C/10 min warm forming”, the tensile strength and yield strength of the 2A97 Al-Li alloy reach 565.3 MPa and 531.2 MPa, respectively. The pre-aging time is reduced by 65–75% compared to the traditional artificial aging treatment.
- (2)
- The addition of pre-strain promotes the transformation of low-angle grain boundaries into high-angle grain boundaries, as well as the reduction in the KAM values, the increase in the GOS recrystallized regions, and the appearance of two typical recrystallization textures: the cube texture and the strengthened P texture. It further increases the dislocation density and promotes the dynamic recrystallization during the warm forming process.
- (3)
- The addition of pre-strain significantly accelerates the precipitation process and optimizes the distribution pattern. And the T1 phases nucleate and precipitate by consuming δ′ phases and θ′ phases during the warm maintaining. At the warm-maintaining time of 10 min, the T1 phases exist in a fine and dense distribution, which provides better pinning effects on dislocation slip and leads to optimal mechanical properties. However, further extension of the warm-maintaining time causes the T1 phases to grow and coarsen, resulting in a reduction in strength levels.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abd El-Aty, A.; Xu, Y.; Guo, X.; Zhang, S.-H.; Ma, Y.; Chen, D. Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: A review. J. Adv. Res. 2018, 10, 49–67. [Google Scholar] [CrossRef] [PubMed]
- Dursun, T.; Soutis, C. Recent developments in advanced aircraft aluminium alloys. Mater. Des. (1980–2015) 2014, 56, 862–871. [Google Scholar] [CrossRef]
- Rioja, R.J.; Liu, J. The evolution of Al-Li base products for aerospace and space applications. Metall. Mater. Trans. A 2012, 43, 3325–3337. [Google Scholar] [CrossRef]
- Kablov, E.N.; Antipov, V.V.; Oglodkova, J.S.; Oglodkov, M.S. Development and application prospects of aluminum–lithium alloys in aircraft and space technology. Metallurgist 2021, 65, 72–81. [Google Scholar] [CrossRef]
- Lv, K.; Zhu, C.; Zheng, J.; Wang, X.; Chen, B. Precipitation of T1 phase in 2198 Al-Li alloy studied by atomic-resolution HAADF-STEM. J. Mater. Res. 2019, 34, 3535–3544. [Google Scholar] [CrossRef]
- Wang, S.C.; Starink, M.J. Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li) based alloys. Int. Mater. Rev. 2005, 50, 193–215. [Google Scholar] [CrossRef]
- Kang, S.J.; Kim, T.-H.; Yang, C.-W.; Lee, J.I.; Park, E.S.; Taewon, N.; Kim, M. Atomic structure and growth mechanism of T1 precipitate in Al-Cu-Li-Mg-Ag alloy. Scr. Mater. 2015, 109, 68–71. [Google Scholar] [CrossRef]
- Rodgers, B.I.; Prangnell, P.B. Quantification of the influence of increased pre-stretching on microstructure-strength relationships in the Al-Cu-Li alloy AA2195. Acta Mater. 2016, 108, 55–67. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, C.; Chen, J.; Liu, R.; Jiang, J.; Cui, X.; Liang, S.; Chi, H.; Zou, L. Effects of pre-strain deep cryogenic aging on the mechanical and corrosion properties of 2A97 aluminum-lithium alloy. J. Mater. Res. Technol. 2024, 30, 2728–2737. [Google Scholar] [CrossRef]
- Gao, C.; Gao, R.; Ma, Y. Microstructure and mechanical properties of friction spot welding aluminium-lithium 2A97 alloy. Mater. Des. 2015, 83, 719–727. [Google Scholar] [CrossRef]
- Tsao, C.-S.; Chen, C.-Y.; Kuo, T.-Y.; Lin, T.-L.; Yu, M.-S. Size distribution and coarsening kinetics of δ′ precipitates in Al–Li alloys considering temperature and concentration dependence. Mater. Sci. Eng. A 2003, 363, 228–233. [Google Scholar] [CrossRef]
- Jo, H.-H.; Hirano, K.-i. Precipitation processes in Al-Cu-Li alloys by DSC. Mater. Sci. Forum 1987, 13/14, 377–382. [Google Scholar] [CrossRef]
- Gayle, F.W.; Heubaum, F.H.; Pickens, J.R. Structure and properties during aging of an ultra-high strength Al-Cu-Li-Ag-Mg alloy. Scr. Metall. Mater. 1990, 24, 79–84. [Google Scholar] [CrossRef]
- Howe, J.M.; Lee, J.; Vasudevan, A.K. Structure and deformation behavior of T1 precipitate plates in an Al-2Li-1 Cu alloy. Metall. Trans. A 1988, 19, 2911–2920. [Google Scholar] [CrossRef]
- Araullo-Peters, V.; Gault, B.; De Geuser, F.; Deschamps, A.; Cairney, J.M. Microstructural evolution during ageing of Al-Cu-Li-x alloys. Acta Mater. 2014, 66, 199–208. [Google Scholar] [CrossRef]
- Kumar, K.S.; Brown, S.A.; Pickens, J.R. Microstructural evolution during aging of an Al-Cu-Li-Ag-Mg-Zr alloy. Acta Mater. 1996, 44, 1899–1915. [Google Scholar] [CrossRef]
- Li, Y.; Xu, G.-F.; Qiao, H.-G.; Liu, S.-C.; Peng, X.-Y. Effect of pre-deformation on microstructure and mechanical properties of 2050 Al-Li alloy. Trans. Nonferrous Met. Soc. China 2024, 34, 1774–1788. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, G.; Xu, X.; Chen, X.; Zhang, W. Microstructures and mechanical properties of spray deposited 2195 Al-Cu-Li alloy through thermo-mechanical processing. Mater. Sci. Eng. A 2018, 727, 78–89. [Google Scholar] [CrossRef]
- Chen, F.; Wang, P.; Zhan, L.; Ruan, X.; Wu, H.; Xu, Y.; Ma, B.; Liu, C.; Zeng, Q.; Hu, Z.; et al. Creep behavior and microstructure evolution during two-stage creep aging of a 2195 Al-Li alloy. Mater. Sci. Eng. A 2022, 850, 143555. [Google Scholar] [CrossRef]
- Yang, L.; Zhan, L.H.; Wu, W. Analysis method for orange peel structure on aluminium-lithium alloy surface during stretch forming process. Mater. Res. Innov. 2014, 18 (Suppl. S2), S2-5–S2-11. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Z.; Lin, J.; Yang, Y.-L.; Huang, B.-M.; Chung, T.-F.; Yang, J.-R. Experimental investigation of tension and compression creep-ageing behaviour of AA2050 with different initial tempers. Mater. Sci. Eng. A 2016, 657, 299–308. [Google Scholar] [CrossRef]
- Jia, L.; Ren, X.; Hou, H.; Zhang, Y. Microstructural evolution and superplastic deformation mechanisms of as-rolled 2A97 alloy at low-temperature. Mater. Sci. Eng. A 2019, 759, 19–29. [Google Scholar] [CrossRef]
- Gao, H.; Weng, T.; Liu, J.; Li, C.; Li, Z.; Wang, L. Hot stamping of an Al-Li alloy: A feasibility study. Manuf. Rev. 2016, 3, 9. [Google Scholar] [CrossRef]
- Fan, X.; He, Z.; Lin, P.; Yuan, S. Microstructure, texture and hardness of Al-Cu-Li alloy sheet during hot gas forming with integrated heat treatment. Mater. Des. 2016, 94, 449–456. [Google Scholar] [CrossRef]
- Hua, L.; Zhang, W.; Ma, H.; Hu, Z. Investigation of formability, microstructures and post-forming mechanical properties of heat-treatable aluminum alloys subjected to pre-aged hardening warm forming. Int. J. Mach. Tools Manuf. 2021, 169, 103799. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H.; Hu, Z.; Hu, Z.-L.; Hua, L. Investigation on the deformation behavior and post-formed microstructure/properties of AA7075-T6 alloy under pre-hardened hot forming process. Mater. Sci. Eng. A 2020, 792, 139749. [Google Scholar] [CrossRef]
- Sun, Q.; Yu, S.; Wang, H.; Ma, H.; Li, H.; Hu, Z. Experimental and simulation study for the influence of thermal pre-deformation on subsequent aging precipitation kinetics of Al-Zn-Mg-Cu alloy. Materials 2022, 15, 4634. [Google Scholar] [CrossRef]
- Sidhar, H.; Mishra, R.S. Aging kinetics of friction stir welded Al-Cu-Li-Mg-Ag and Al-Cu-Li-Mg alloys. Mater. Des. 2016, 110, 60–71. [Google Scholar] [CrossRef]
- Starink, M.J.; Wang, P.; Sinclair, I.; Gregson, P.J. Microstrucure and strengthening of Al-Li-Cu-Mg alloys and MMCs: I. Analysis and Modelling of Microstructural changes. Acta Mater. 1999, 47, 3841–3853. [Google Scholar] [CrossRef]
- Ghosh, K.S.; Das, K.; Chatterjee, U.K. Calorimetric studies of 8090 and 1441 Al-Li-Cu-Mg-Zr alloys of conventional and retrogressed and reaged tempers. J. Mater. Sci. 2007, 42, 4276–4290. [Google Scholar] [CrossRef]
- Yuan, Z.-S.; Lu, Z.; Xie, Y.-H.; Dai, S.-L.; Liu, C.-S. Effects of RRA treatments on microstructures and properties of a new high-strength aluminum-lithium alloy-2A97. Chin. J. Aeronaut. 2007, 20, 187–192. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, J.; Li, G.; Shao, W.; Zhen, L. Precipitation during quenching in 2A97 aluminum alloy and the influences from grain structure. Materials 2021, 14, 2802. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Yang, L.; Yu, J.; Ma, Y. Effect of thermo-mechanical treatment process on microstructure and mechanical properties of 2A97 Al-Li alloy. Trans. Nonferrous Met. Soc. China 2014, 24, 2196–2202. [Google Scholar] [CrossRef]
- Krishna, N.N.; Tejas, R.; Sivaprasad, K.; Venkateswarlu, K. Study on cryorolled Al-Cu alloy using X-ray diffraction line profile analysis and evaluation of strengthening mechanisms. Mater. Des. (1980–2015) 2013, 52, 785–790. [Google Scholar] [CrossRef]
- Ma, H.; Wang, P.; Huang, X.; Mao, W.; Gong, Z.; Zhang, M.; Zhu, H. Study on the Flow Behavior of 5052 Aluminum Alloy over a Wide Strain-Rate Range with a Constitutive Model Based on the Arrhenius Model Extension. Metals 2023, 13, 1948. [Google Scholar] [CrossRef]
- Ungár, T.; Borbély, A. The effect of dislocation contrast on x-ray line broadening: A new approach to line profile analysis. Appl. Phys. Lett. 1996, 69, 3173–3175. [Google Scholar] [CrossRef]
- Hua, L.; Hu, X.; Han, X. Microstructure evolution of annealed 7075 aluminum alloy and its influence on room-temperature plasticity. Mater. Des. 2020, 196, 109192. [Google Scholar] [CrossRef]
- Choi, K.; Lee, S.; Bae, D. Natural and Artificial Aging Effects on the Deformation Behaviors of Al-Mg-Zn Alloy Sheets. Materials 2024, 17, 4478. [Google Scholar] [CrossRef]
- Lin, Y.; Zheng, Z.; Zhang, H.; Han, Y. Effect of heat treatment process on tensile properties of 2A97 Al-Li alloy: Experiment and BP neural network simulation. Trans. Nonferrous Met. Soc. China 2013, 23, 1728–1736. [Google Scholar] [CrossRef]
Composition | Cu | Li | Mg | Zn | Mn | Fe | Si | Ti | Zr | Al |
---|---|---|---|---|---|---|---|---|---|---|
Content (wt %) | 3.53 | 1.32 | 0.44 | 0.49 | 0.28 | 0.10 | 0.06 | 0.03 | 0.17 | Balance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Z.; Huang, X.; Wang, P.; Ma, H. Mechanical Properties and Microstructure Evolution of Al-Li Alloy Under the PHF Process. Materials 2025, 18, 566. https://doi.org/10.3390/ma18030566
Gong Z, Huang X, Wang P, Ma H. Mechanical Properties and Microstructure Evolution of Al-Li Alloy Under the PHF Process. Materials. 2025; 18(3):566. https://doi.org/10.3390/ma18030566
Chicago/Turabian StyleGong, Zhiang, Xiang Huang, Peiliao Wang, and Huijuan Ma. 2025. "Mechanical Properties and Microstructure Evolution of Al-Li Alloy Under the PHF Process" Materials 18, no. 3: 566. https://doi.org/10.3390/ma18030566
APA StyleGong, Z., Huang, X., Wang, P., & Ma, H. (2025). Mechanical Properties and Microstructure Evolution of Al-Li Alloy Under the PHF Process. Materials, 18(3), 566. https://doi.org/10.3390/ma18030566