Slip Risk on Surfaces Made with 3D Printing Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measuring Devices
2.1.1. British Portable Skid Resistance Tester
2.1.2. Carl Zeiss Jena Profilometr
2.2. Measurement Procedures
2.2.1. British Pendulum Measurement Procedure
2.2.2. Roughness Measurement Procedure
2.3. Characteristics of the Research Plates and Materials Used
- Polylactic Acid (PLA): PLA is a crystalline material with good rigidity and low flexibility. It has a molecular weight (average weight, Mw) of approximately 80,000–100,000 g/mol and a glass transition temperature of 55–60 °C.
- Polyethylene Terephthalate Glycol (PET-G): PET-G is an amorphous polymer known for its higher chemical resistance and greater flexibility compared to PLA. The molecular weight of PET-G is approximately 30,000–40,000 g/mol, and its glass transition temperature is around 70–80 °C.
- Thermoplastic Polyurethane (TPU): TPU is a flexible material with excellent abrasion resistance and good adhesion to other surfaces. It has a molecular weight ranging between 80,000 and 150,000 g/mol, depending on the material grade, and a Shore hardness between 85A and 95A.
- PLA (Polylactic Acid): PLA demonstrates moderate hydrophobicity, with a contact angle ranging between 65° and 75°. This behavior is attributed to its polar chemical structure, which increases its interaction with water molecules, leading to a relatively lower resistance to moisture [47].
- PET-G (Polyethylene Terephthalate Glycol): PET-G has a higher degree of hydrophobicity compared to PLA, with a contact angle in the range of 80° to 90°. Its less polar molecular structure reduces the water interaction, enhancing its ability to repel moisture. This property can positively impact slip resistance performance under wet conditions [48].
- TPU (Thermoplastic Polyurethane): The TPU exhibits the highest hydrophobicity among the tested materials, with a contact angle ranging from 90° to 100°. Its flexible and non-polar nature results in excellent water repellency, which can contribute to its slip resistance behavior, particularly under wet conditions [49].
3. Results and Discussion
3.1. Slip Risk Value Results
3.2. Roughness Test Results and Their Analysis
3.3. Multi-Criteria Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PLA | Polylactic Acid |
PET-G | Polyethylene Terephthalate Glycol |
TPU | Thermoplastic Polyurethane |
BSRT | British Portable Skid Resistance Tester |
BPN | British Pendulum Number |
RSV | Slip Resistance Value |
FDM | Fused Deposition Modeling |
SLA | Stereolitography |
PD | Print direction |
df | degrees of freedom |
References
- Šproch, F.; Schindlerová, V.; Šajdlerová, I. Using 3D Printing Technology in Prototype Production to Control the Dimensions of Complexly Shaped Products. Manuf. Technol. 2020, 20, 385–393. [Google Scholar] [CrossRef]
- Jadhav, A.; Jadhav, V.S. A Review on 3D Printing: An Additive Manufacturing Technology. Mater. Today Proc. 2022, 62, 2094–2099. [Google Scholar] [CrossRef]
- Waluś, K.J.; Warguła, Ł.; Wieczorek, B.; Krawiec, P. Slip Risk Analysis on the Surface of Floors in Public Utility Buildings. J. Build. Eng. 2022, 54, 104643. [Google Scholar] [CrossRef]
- Warguła, Ł.; Wieczorek, B.; Krystofiak, T.; Sydor, M. Impact of Surface Finishing Technology on Slip Resistance of Oak Lacquer Wood Floorboards with Distinct Gloss Levels. Wood Mater. Sci. Eng. 2024, 19, 1163–1172. [Google Scholar] [CrossRef]
- Warguła, Ł.; Rosiak, S.; Gierz, L.; Gavrilin, A.; Bykadorov, S. The Concept of a Wood Chopping Machine with a Mechanical Overload System Ensuring Continuity of Work. Mater. Mech. Eng. Technol. 2021, 3, 21–26. [Google Scholar] [CrossRef]
- Krawiec, P.; Warguła, Ł.; Różański, L. Diagnostics of the Thermal Condition of the Cable Gear Used in the Drive of a Wood Chipper. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1016, 012013. [Google Scholar] [CrossRef]
- Krawiec, P.; Warguła, Ł.; Waluś, K.J.; Gawrońska, E.; Ságová, Z.; Matijošius, J. Efficiency and Slippage in Draw Gears with Flat Belts. Energies 2022, 15, 9184. [Google Scholar] [CrossRef]
- Chang, W.-R.; Leclercq, S.; Lockhart, T.E.; Haslam, R. State of Science: Occupational Slips, Trips and Falls on the Same Level. Ergonomics 2016, 59, 861–883. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, M.; Bhandari, B.; Wang, Y. 3D Printing: Printing Precision and Application in Food Sector. Trends Food Sci. Technol. 2017, 69, 83–94. [Google Scholar] [CrossRef]
- Van Der Putten, J.; Deprez, M.; Cnudde, V.; De Schutter, G.; Van Tittelboom, K. Microstructural Characterization of 3D Printed Cementitious Materials. Materials 2019, 12, 2993. [Google Scholar] [CrossRef]
- Bembenek, M.; Kowalski, Ł.; Kosoń-Schab, A. Research on the Influence of Processing Parameters on the Specific Tensile Strength of FDM Additive Manufactured PET-G and PLA Materials. Polymers 2022, 14, 2446. [Google Scholar] [CrossRef] [PubMed]
- Valot, L.; Martinez, J.; Mehdi, A.; Subra, G. Chemical Insights into Bioinks for 3D Printing. Chem. Soc. Rev. 2019, 48, 4049–4086. [Google Scholar] [CrossRef] [PubMed]
- Pereira, T.; Barroso, S.; Gil, M.M. Food Texture Design by 3D Printing: A Review. Foods 2021, 10, 320. [Google Scholar] [CrossRef]
- Tymms, C.; Zorin, D.; Gardner, E.P. Tactile Perception of the Roughness of 3D-Printed Textures. J. Neurophysiol. 2018, 119, 862–876. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.; Zhao, X.; Yu, C.; Zhou, X. Quantitative Evaluations on Influences of Aggregate Surface Texture on Interfacial Adhesion Using 3D Printing Aggregate. Constr. Build. Mater. 2022, 328, 127022. [Google Scholar] [CrossRef]
- Şirin, Ş.; Aslan, E.; Akincioğlu, G. Effects of 3D-Printed PLA Material with Different Filling Densities on Coefficient of Friction Performance. Rapid Prototyp. J. 2023, 29, 157–165. [Google Scholar] [CrossRef]
- Xu, J.; Liu, N.; Zhang, F.; Du, J.; Zheng, C.; Gao, X.; Liu, K. Frictional Behaviors of 3D-Printed Polylactic Acid Components With Spiral-Groove Surface Textures Under Oil Lubrication. J. Tribol. 2022, 145, 011803. [Google Scholar] [CrossRef]
- Jiang, S.; Hu, K.; Zhan, Y.; Zhao, C.; Li, X. Theoretical and Experimental Investigation on the 3D Surface Roughness of Material Extrusion Additive Manufacturing Products. Polymers 2022, 14, 293. [Google Scholar] [CrossRef]
- Buj-Corral, I.; Domínguez-Fernández, A.; Durán-Llucià, R. Influence of Print Orientation on Surface Roughness in Fused Deposition Modeling (FDM) Processes. Materials 2019, 12, 3834. [Google Scholar] [CrossRef]
- Vazquez-Calvo, C.; Alvarez de Buergo, M.; Fort, R.; Varas-Muriel, M.J. The Measurement of Surface Roughness to Determine the Suitability of Different Methods for Stone Cleaning. J. Geophys. Eng. 2012, 9, S108–S117. [Google Scholar] [CrossRef]
- Abeykoon, C.; Sri-Amphorn, P.; Fernando, A. Optimization of Fused Deposition Modeling Parameters for Improved PLA and ABS 3D Printed Structures. Int. J. Lightweight Mater. Manuf. 2020, 3, 284–297. [Google Scholar] [CrossRef]
- Rodríguez-Panes, A.; Claver, J.; Camacho, A.M. The Influence of Manufacturing Parameters on the Mechanical Behaviour of PLA and ABS Pieces Manufactured by FDM: A Comparative Analysis. Materials 2018, 11, 1333. [Google Scholar] [CrossRef] [PubMed]
- Özsoy, K.; ErçetiN, A.; ÇeviK, Z.A. Comparison of Mechanical Properties of PLA and ABS Based Structures Produced by Fused Deposition Modelling Additive Manufacturing. Eur. J. Sci. Technol. 2021, 27, 802–809. [Google Scholar] [CrossRef]
- Rajakaruna, R.A.D.N.V.; Subeshan, B.; Asmatulu, E. Fabrication of Hydrophobic PLA Filaments for Additive Manufacturing. J. Mater. Sci. 2022, 57, 8987–9001. [Google Scholar] [CrossRef]
- Kim, I.-J.; Hsiao, H.; Simeonov, P. Functional Levels of Floor Surface Roughness for the Prevention of Slips and Falls: Clean-and-Dry and Soapsuds-Covered Wet Surfaces. Appl. Ergon. 2013, 44, 58–64. [Google Scholar] [CrossRef]
- Tian, C.; Li, X.; Chen, Z.; Guo, G.; Wang, L.; Rong, Y. Study on Formability, Mechanical Property and Finite Element Modeling of 3D-Printed Composite for Metal-Bonded Diamond Grinding Wheel Application. J. Manuf. Process. 2020, 54, 38–47. [Google Scholar] [CrossRef]
- Basha, S.M.; Bhuyan, M.; Basha, M.M.; Venkaiah, N.; Sankar, M.R. Laser Polishing of 3D Printed Metallic Components: A Review on Surface Integrity. Mater. Today Proc. 2020, 26, 2047–2054. [Google Scholar] [CrossRef]
- Chang, S.; Liu, A.; Ong, C.Y.A.; Zhang, L.; Huang, X.; Tan, Y.H.; Zhao, L.; Li, L.; Ding, J. Highly Effective Smoothening of 3D-Printed Metal Structures via Overpotential Electrochemical Polishing. Mater. Res. Lett. 2019, 7, 282–289. [Google Scholar] [CrossRef]
- Kraemer Fernandez, P.; Unkovskiy, A.; Benkendorff, V.; Klink, A.; Spintzyk, S. Surface Characteristics of Milled and 3D Printed Denture Base Materials Following Polishing and Coating: An In-Vitro Study. Materials 2020, 13, 3305. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, J.; Qi, X.; Tian, P.; Feng, Z.; Qin, W.; Wu, D.; Liu, L.; Wang, Y. Recent Progress on Anti-Slip and Highly Wear-Resistant Elastic Coatings: An Overview. Coatings 2024, 14, 47. [Google Scholar] [CrossRef]
- Lin, S.L.; Cai, H.H. Preparation of New Anti-Slip Flooring Coatings: Hydrophobic MMA Floor Coatings. Adv. Mater. Res. 2013, 721, 73–76. [Google Scholar] [CrossRef]
- Hozdić, E. Characterization and Comparative Analysis of Mechanical Parameters of FDM- and SLA-Printed ABS Materials. Appl. Sci. 2024, 14, 649. [Google Scholar] [CrossRef]
- Chalgham, A.; Ehrmann, A.; Wickenkamp, I. Mechanical Properties of FDM Printed PLA Parts before and after Thermal Treatment. Polymers 2021, 13, 1239. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Baghani, M. 3D Printing of PLA-TPU with Different Component Ratios: Fracture Toughness, Mechanical Properties, and Morphology. J. Mater. Res. Technol. 2022, 21, 3970–3981. [Google Scholar] [CrossRef]
- Bortnowski, P.; Kawalec, W.; Król, R.; Ozdoba, M. Types and Causes of Damage to the Conveyor Belt—Review, Classification and Mutual Relations. Eng. Fail. Anal. 2022, 140, 106520. [Google Scholar] [CrossRef]
- Krawiec, P.; Warguła, Ł.; Kaczmarzyk, P.; Zharkevich, O. Influence of the Value of the Tension Force of the Belt Transmission with a V-Belt on the Value of the Transmitted Mechanical Power. AIP Conf. Proc. 2023, 2976, 020002. [Google Scholar] [CrossRef]
- Hakami, F.; Pramanik, A.; Ridgway, N.; Basak, A.K. Developments of Rubber Material Wear in Conveyer Belt System. Tribol. Int. 2017, 111, 148–158. [Google Scholar] [CrossRef]
- AS 4586:2013; Slip Resistance Classification of New Pedestrian Surface Materials. Standards Australia: Sydney, Australia, 2013.
- UK Slip Resistance Group. 2023. Available online: https://www.ukslipresistance.org.uk/ (accessed on 2 November 2024).
- HB 198:2014; Guide to the Specification and Testing of Slip Resistance of Pedestrian Surfaces. Standards Australia: Sydney, Australia, 2014.
- BS EN 13036-4:2011; Road and Airfield Surface Characteristics—Test Methods—Part 4: Method for Measurement of Slip/Skid re-Sistance of a Surface: The Pendulum Test. British Standards Institution (BSI): London, UK, 2011. Available online: https://www.munroinstruments.com (accessed on 2 November 2024).
- BS 812-114; Testing Aggregates. Method for Determination of the Polished Stone Value. British Standards Institution (BSI): London, UK, 1989.
- PN-EN ISO 3274:1997; Product Geometry Specifications—Geometric Structure of the Surface: Profile Method—Nominal Characteristics of Contact Devices. Polski Komitet Normalizacyjny (PKN): Warsaw, Poland, 1997. (In Polish)
- PN-EN ISO 4288:1997; Geometric Requirements for Products—Geometric Structure of Surfaces—Principles and Procedures for Assessing the Geometric Structure of Surfaces by the Profile Method. Polski Komitet Normalizacyjny (PKN): Warsaw, Poland, 1997. (In Polish)
- PN-M-04250:1987; Top Layer—Terminology. Polski Komitet Normalizacyjny (PKN): Warsaw, Poland, 1987. (In Polish)
- PN-EN ISO 4287:1999; Product Geometry Specifications—Surface Geometric Structure: Profile Method—Terms, Definitions and Parameters of Surface Geometric Structure. Polski Komitet Normalizacyjny (PKN): Warsaw, Poland, 1999. (In Polish)
- Available online: https://www.accudynetest.com/polytable_03.html?sortby=contact_angle (accessed on 23 December 2024).
- Bouguermouh, K.; Habibi, M.; Laperrière, L.; Li, Z.; Abdin, Y. 4D-printed PLA-PETG polymer blends: Comprehensive analysis of thermal, mechanical, and shape memory performances. J. Mater. Sci. 2024, 59, 11596–11613. [Google Scholar] [CrossRef]
- Shakouri, Z.; Nazockdast, H. Microstructural development and mechanical performance of PLA/TPU blends containing geometrically different cellulose nanocrystals. Cellulose 2018, 25, 7167–7188. [Google Scholar] [CrossRef]
- Kererat, C.; Kroehong, W.; Thaipum, S.; Chindaprasirt, P. Bottom Ash Stabilized with Cement and Para Rubber Latex for Road Base Applications. Case Stud. Constr. Mater. 2022, 17, e01259. [Google Scholar] [CrossRef]
- Miklečić, J.; Jirouš-Rajković, V. The Relationship between Roughness of Finished Wood Floors and Slip Resistance. Drv. Ind. 2021, 72, 49–56. [Google Scholar] [CrossRef]
- Sudoł, E.; Małek, M.; Jackowski, M.; Czarnecki, M.; Strąk, C. What Makes a Floor Slippery? A Brief Experimental Study of Ceramic Tiles Slip Resistance Depending on Their Properties and Surface Conditions. Materials 2021, 14, 7064. [Google Scholar] [CrossRef] [PubMed]
Risk of Slipping | SRV |
---|---|
High | ≤25 |
Moderate | 25–35 |
Low | 35–65 |
Extremely Low | ≥65 |
PLA | ||
0° | 45° | 90° |
PET-G | ||
0° | 45° | 90° |
TPU | ||
0° | 45° | 90° |
Type of Material | |||
---|---|---|---|
3D Printing Parameters | PLA | PET-G | TPU |
Nozzle Temperature [°C] | 215 | 230 | 228 |
Bed Temperature [°C] | 60 | 80 | 45 |
Infill [%] | 85 | 85 | 85 |
Layer Thickness [mm] | 0.2 | 0.2 | 0.2 |
Print Speed [mm/s] | 60 | 60 | 25 |
Print Cooling [%] | 100 | 0 | 50 |
Wall Thickness [mm] | 0.8 | 0.8 | 0.8 |
Infill Type | straight lines | straight lines | straight lines |
Factor | Sum of Squares | df | F | p-Value |
---|---|---|---|---|
Print direction | 213.52 | 1 | 2.02 | 0.2048 |
Roughness | 26.53 | 1 | 0.25 | 0.6341 |
Residual | 633.47 | 6 |
Factor | Sum of Squares | df | F | p-Value |
---|---|---|---|---|
Print direction | 0.74 | 1 | 0.0063 | 0.9391 |
Roughness | 141.05 | 1 | 1.2082 | 0.3138 |
Residual | 700.50 | 6 |
Factor | Sum of Squares | df | F | p-Value |
---|---|---|---|---|
Material | 810.78 | 2 | 8.83 | 0.0044 |
Type of study | 4355.56 | 1 | 94.92 | <0.0001 |
Material and type of research | 458.11 | 2 | 4.99 | 0.0265 |
Residual | 550.67 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wieczorek, B.; Gierz, Ł.; Warguła, Ł.; Kinal, G.; Kostov, B.; Waluś, K.J. Slip Risk on Surfaces Made with 3D Printing Technology. Materials 2025, 18, 573. https://doi.org/10.3390/ma18030573
Wieczorek B, Gierz Ł, Warguła Ł, Kinal G, Kostov B, Waluś KJ. Slip Risk on Surfaces Made with 3D Printing Technology. Materials. 2025; 18(3):573. https://doi.org/10.3390/ma18030573
Chicago/Turabian StyleWieczorek, Bartosz, Łukasz Gierz, Łukasz Warguła, Grzegorz Kinal, Boris Kostov, and Konrd Jan Waluś. 2025. "Slip Risk on Surfaces Made with 3D Printing Technology" Materials 18, no. 3: 573. https://doi.org/10.3390/ma18030573
APA StyleWieczorek, B., Gierz, Ł., Warguła, Ł., Kinal, G., Kostov, B., & Waluś, K. J. (2025). Slip Risk on Surfaces Made with 3D Printing Technology. Materials, 18(3), 573. https://doi.org/10.3390/ma18030573