Non-Invasive Raman and XRF Study of Mīnā’ī Decoration, the First Sophisticated Painted Enamels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Artefacts
2.2. Techniques
2.2.1. Optical Microscopy
2.2.2. Scanning Electron Microscopy–Electron Dispersive Spectroscopy
2.2.3. Portable X-Ray Fluorescence Spectroscopy (pXRF)
2.2.4. Raman Microspectroscopy
3. Results
3.1. Microstructures
3.2. Information on Elemental Composition
3.2.1. Paste Composition
3.2.2. Glaze Composition
3.3. Classification Based on Composition Ratios Measured by pXRF
3.3.1. Body
3.3.2. Background Glaze
3.3.3. Cobalt and Associated Elements
3.3.4. Other Colors and Luster
3.4. Phase Characterization
3.4.1. Raman Signatures of the Body
3.4.2. Raman Signatures of the Glaze and Painted Enamel Matrices
3.4.3. Raman Signatures of the Pigments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Shard | O | Si | Al | Mg | Na | K | Ca | P | S | Cl | Pb | Sn | Pb/Sn | Fe | Ti | Co | Cr |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MPP1 | 66.3 | 19.29 | 2.85 | 0.31 | 5.48 | 0.52 | 0.29 | 0.43 | 0.4 | 0.56 | 3.22 | 0.31 | 10.4 | 0.02 | - | - | - |
MPP2 + | 73.75 | 9.26 | 4.38 | 0.62 | 2.42 | 0.36 | 1.22 | 4.26 | 0.98 | 0.52 | 2.13 | 0.04 | 53.2 | 0.03 | 0.03 | - | - |
MPP3 | 61.52 | 31.98 | 1.65 | 0.24 | 2.38 | 0.49 | 0.77 | 0.43 | 0.17 | 0.23 | - | - | 0.15 | - | - | - | |
MP1 a | 55.77 | 37.8 | 1.21 | 0.38 | 1.49 | 0.41 | 0.99 | 0.4 | 0.18 | 0.4 | 0.23 | - | - | 0.55 | 0.05 | - | 0.15 |
MP2 | 57.64 | 35.77 | 1.21 | 0.31 | 1.42 | 0.35 | 1.26 | 0.72 | 0.19 | 0.31 | 0.54 | 0.05 | 10.8 | 0.21 | 0.03 | - | - |
MO1 a | 60.41 | 25.04 | 3.49 | 1.33 | 4.16 | 1.03 | 0.9 | 0.17 | 0.13 | 0.25 | 1.85 | 0.38 | 4.86 | 0.53 | 0.01 | 0.19 | 0.13 |
MO2 | 67.87 | 20.57 | 4.6 | 1.04 | 3.33 | 0.54 | 0.35 | 0.10 | 0.12 | 0.15 | 1.15 | 0.13 | 8.84 | 0.02 | 0.02 | - | - |
MFF1 | 55.82 | 25.58 | 3.61 | 1.68 | 6.04 | 1.11 | 1.30 | 0.15 | 0.18 | 0.52 | 2.6 | 1.23 | 2.1 | 0.15 | 0.02 | - | - |
MFF2 | 57.66 | 28.09 | 5.69 | 0.81 | 4.35 | 0.95 | 1.18 | 0.15 | 0.14 | 0.10 | - | - | - | 0.58 | 0.22 | 0.08 | |
MFF3 a | 57.69 | 27.06 | 5.54 | 1.24 | 3.12 | 1.26 | 0.86 | 0.14 | 0.15 | 0.28 | 1.89 | 0.39 | 4.85 | 0.23 | 0.03 | 0.14 | - |
MF1 | 63.68 | 25.52 | 4.34 | 0.55 | 3.74 | 0.95 | 0.41 | 0.14 | 0.08 | 0.16 | - | - | - | 0.21 | 0.23 | - | - |
MF2 | 67.56 | 18.37 | 3.61 | 0.64 | 2.81 | 1.16 | 1.32 | 0.65 | 0.23 | 0.26 | 1.17 | 1.89 | 0.61 | 0.29 | 0.04 |
Shard | Color | O | Si | Al | Mg | Na | K | Ca | P | S | Cl | Pb | Sn | Pb/Sn | Fe | Ti | Cu | Co |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MPP | Blue1 a | 68.93 | 17.38 | 3.44 | 0.4 | 4.86 | 0.36 | 0.37 | 0.69 | 0.41 | 0.47 | 2.37 | 0.29 | 8.17 | 0.04 | 0.01 | 0.01 | - |
Blue2 b | 72.04 | 13.59 | 7.27 | 0.59 | 3.66 | 0.18 | 0.06 | 0.18 | 0.30 | 0.31 | 1.5 | 0.2 | 7.5 | 0.02 | - | 0.02 | - | |
Blue3 b | 69.99 | 12.99 | 9.86 | 0.75 | 3.64 | 0.33 | 0.14 | 0.25 | 0.33 | 0.35 | 1.34 | 0.14 | 9.57 | 0.01 | - | 0.06 | - | |
Black1 a | 70.75 | 14.27 | 5.84 | 0.38 | 2.1 | 0.41 | 1.03 | 2.41 | 0.69 | 0.46 | 1.41 | 0.08 | 17.62 | 0.07 | 0.04 | 0.02 | 0.03 | |
Black2 b | 71.03 | 15.35 | 7.72 | 0.58 | 2.91 | 0.51 | 0.28 | 0.45 | 0.62 | 0.22 | 0.23 | 0.02 | 11.5 | 0.04 | 0.01 | 0.02 |
References
- Crowe, Y. Change in style of Persian ceramics in the last part of 7/13th c. Riv. Degli Studi Orient. 1985, 59, 47–55. [Google Scholar]
- Soustiel, J. La Céramique Islamique—Le Guide du Connaisseur; Office du Livre; Editions Vilo: Fribourg, Switzerland, 1985. [Google Scholar]
- Soustiel, J.; Porter, Y. Tombeaux de Paradis: Le Shâh-e Zende de Samarcande et la Céramique Architecturale d’Asie Centrale; Editions d’Art Monelle Hayot: Saint-Rémy-en-l’Eau, France, 2003. [Google Scholar]
- Watson, O. Ceramics From Islamic Lands-The Al-Sabah Collections; Thames & Hudson: London, UK, 2004; p. 363. [Google Scholar]
- Mason, R.; Tite, M.; Paynter, S.; Salter, C. Advances in Polychrome Ceramics in Islamic World of the 12th Century AD. Archaeometry 2001, 43, 191–209. [Google Scholar] [CrossRef]
- Mason, R. Shine Like the Sun; Lustre Painted and Associated Pottery from the Medieval Middle East; Mazda Publishers: Costa Mesa, CA, USA, 2004; p. 131. [Google Scholar]
- McClary, R.P. A New Approach to Mīnā’ī Wares: Chronology and Decoration. Persica 2017, 1–20. Available online: https://eprints.whiterose.ac.uk/141057/1/McClary_Mina_i_Persica_2016.pdf (accessed on 4 December 2024).
- François, V. Les Seldjoukides, médiateurs des importations de céramiques perses à Byzance, Byzance et l’Asie: 7e Symposium Byzantinon, Dec. 1997. Byzantische Forschungen Inter. Zeitsc. Byzantinisktik 1999, 25, 101–109. [Google Scholar]
- Lane, A. Early Islamic Pottery: Mesopotamia, Egypt and Persia; Faber and Faber: London, UK, 1947. [Google Scholar]
- Wen, R.; Pollard, A. The pigments applied to Islamic Mīnā’ī Wares and the correlation with Chinese Blue-and-White porcelain. Archaeometry 2015, 58, 1–16. [Google Scholar] [CrossRef]
- Sheikh, S.Z. Chinese Influence in Persian Manuscript Illustrations. Int. J. Multidiscip. Curr. Res. 2017, 5, 856–864. [Google Scholar]
- Loukonine, V.; Ivanov, A. Persian Miniatures 120 Illustrations; Parkstone International: New York, NY, USA, 2023. [Google Scholar]
- Porter, Y. Painters, Paintings and Books: An Essay on Indo-Persian Technical Literature, 12–19th Centuries; Routledge: London, UK, 2020. [Google Scholar]
- Allan, J. Abū’l Qāsim’s Treatise on Ceramics. Iran 1973, 11, 111–120. [Google Scholar] [CrossRef]
- Holakooei, P. A Mediaeval Persian Treatise on Coloured and Enamelled Glass: Bayan Al-Sana’at. Iran 2016, 54, 95–106. [Google Scholar] [CrossRef]
- Nikbakht, T.; Montazerzohouri, M. Characterization of historical mīnā’ī and colorful luster glaze ceramics, using ionoluminescence technique. J. Lumin. 2021, 231, 117769. [Google Scholar] [CrossRef]
- Colomban, P.; Simsek Franci, G. Timurid, Ottoman, Safavid and Qajar Ceramics: Raman and Composition Classification of the Different Types of Glaze and Pigments. Minerals 2023, 13, 977. [Google Scholar] [CrossRef]
- Holakooei, P.; de Lapérouse, J.-F.; Carò, F.; Röhrs, S.; Franke, U.; Müller-Wiener, M.; Reiche, I. Non-invasive scientific studies on the provenance and technology of early Islamic ceramics from Afrasiyab and Nishapur. J. Archaeol. Sci. Rep. 2019, 24, 759–772. [Google Scholar] [CrossRef]
- Valiulina, S. Iranian Glazed Ceramics of the 12th—Beginning of the 13th Centuries in the Volga Bulgaria. Heritage 2021, 4, 3712–3730. [Google Scholar] [CrossRef]
- Matin, M. Tin-based opacifiers in archaeological glass and ceramic glazes: A review and new perspectives. Archaeol. Anthropol. Sci. 2019, 11, 1155–1167. [Google Scholar] [CrossRef]
- Yazdani, M. The identification of black painted colorant in mina’i ceramic based on structural investigation and ancient treatise. J. Color Sci. Technol. 2020, 14, 223–235. [Google Scholar]
- Soustiel, L. L’Orient des Collectionneurs. Florilège d’Orient 4; Laure Soustiel—Arts de l’Islam et de l’Inde: Aix-en-Provence, France, 2022. [Google Scholar]
- Baer, E. Metalwork in Medieval Islamic Art; State University of New York Press: Albany, NY, USA, 1983. [Google Scholar]
- Irmawati, J.M. Bird Symbolism in Persian Mysticism Poetry. Inter. Rev. Humanit. Stud. 2019, 4, 695–716. [Google Scholar]
- Available online: https://sayisalkitap.qulto.eu/#/record/9789756959329 (accessed on 7 December 2024).
- Denny, W.B. İznik La Ceramique Turque et l’Art Ottoman; Citadelles and Mazenod: Paris, France, 2004. [Google Scholar]
- Dastjerdi, M.B. The Phoenix Motif during the Decline of the Sassanid Empire (600-700AD). Master’s Thesis, University of Malaya, Kuala Lumpur, Malaysia, 2017. [Google Scholar]
- Barsam, M.; Salehi Kakhki, A.; Saeedi Anaraki, F. Comparative analysis of form and composition, Minai wares motifs of the jame’a mosque of Isfahan with two pictures of Varqa and Gulshah. Pazhoheshha-Ye Bastan Shenasi Iran 2023, 12, 273–303. [Google Scholar]
- Rohani, N. Strange Animals and Creatures in Islamic Miniatures: Focusing on Miniatures of the Conference of the Birds. J. History Cult. Art Res. 2017, 6, 112–126. Available online: https://core.ac.uk/download/pdf/207885750.pdf (accessed on 4 December 2024). [CrossRef]
- Burlot, J.; Gallet, X.; Simsek Franci, G.; Bellot-Gurlet, L.; Colomban, P. Non-Invasive On-site pXRF Analysis of Coloring Agents, Marks and Glazes: Variability and Representativity of Measurements on Qing porcelain. Colorants 2023, 2, 42–57. [Google Scholar] [CrossRef]
- Colomban, P.; Franci, G.S.; Gallet, X. Non-Invasive Mobile Raman and pXRF Analysis of Armorial Porcelain with the Coat of Arms of Louis XV and others Enamelled in Canton: Analytical Criteria for Authentication. Heritage 2024, 7, 4881–4913. [Google Scholar] [CrossRef]
- Available online: https://xrfcheck.bruker.com/InfoDepth (accessed on 9 July 2024).
- Arli, B.D.; Colomban, P.; Kaya, S.; Simsek, G. On-site pXRF analysis of body, glaze and colouring agents of the tiles at the excavation site of İznik kilns. J. Eur. Cer. Soc. 2019, 39, 2199–2209. [Google Scholar] [CrossRef]
- Oudbashi, O.; Emami, S.M.; Davami, P. Bronze in archaeology: A review of the archaeometallurgy of bronze in ancient Iran. Copper alloys-early applications and current performance-enhancing processes. In Copper Alloys: Early Applications and Current Performance—Enhancing Processes; Collini, L., Ed.; Interopen-Intech: Rijeka, Croatia, 2012; pp. 161–186. [Google Scholar]
- Khalil, W.; Kravchenko, S. “Minai” ceramics from Azak. Egypt. J. Archaeol. Restor. Stud. 2016, 6, 151–171. [Google Scholar]
- Koleini, K.; Colomban, P.; Doosti, N.; Niakan, L. Glass finds from the elite house of Roue, a Sasanian city building in western Iran: Composition and classification using XRF and Raman spectroscopy. Heritage 2024, 7, 6137–6150. [Google Scholar] [CrossRef]
- Kissin, S.A. Five element (Ni-Co-As-Ag-Bi) veins. Geosci. Can. 1992, 19, 113–124. Available online: https://journals.lib.unb.ca/index.php/gc/article/view/3768/4282/ (accessed on 15 December 2019).
- Colomban, P.; Kırmızı, B.; Simsek Franci, G. Cobalt and Associated Impurities in Blue (and Green) Glass, Glaze and Enamel: Relationships between Raw Materials, Processing, Composition, Phases and International Trade. Minerals 2021, 11, 633. [Google Scholar] [CrossRef]
- Ladame, G. Les ressources métallifères de l’Iran. Schweiz. Mineral. Petrogr. Mitt. 1945, 25, 165–298. [Google Scholar]
- Matin, M.; Pollard, A.M. From ore to pigment: A description of the minerals and experimental study of cobalt ore processing from the Kâshân mine, Iran. Archaeometry 2017, 59, 731–746. [Google Scholar] [CrossRef]
- Matin, M.; Pollard, A.M. Historical accounts of cobalt ore processing from the Kāshān mine, Iran. Iran 2015, 53, 171–183. [Google Scholar] [CrossRef]
- Colomban, P.; Truong, C. Non-destructive Raman study of the glazing technique in lustre potteries and faience (9–14th centuries): Silver ions, nanoclusters, microstructure and processing. J. Raman Spectrosc. 2004, 35, 195–207. [Google Scholar] [CrossRef]
- Colomban, P.; Milande, V.; Le Bihan, L. On-site Raman analysis of İznik pottery glazes and pigments. J. Raman Spectrosc. 2004, 35, 527–535. [Google Scholar] [CrossRef]
- Bersani, D.; Lottici, P.P. Raman spectroscopy of minerals and mineral pigments in archaeometry. J. Raman Spectrosc. 2016, 47, 499–530. [Google Scholar] [CrossRef]
- Middleton, A.P.; Edwards, H.G.M.; Middleton, P.S.; Ambers, J. Identification of anatase in archaeological materials by Raman spectroscopy: Implications and interpretation. J. Raman Spectrosc. 2005, 36, 984–987. [Google Scholar] [CrossRef]
- Sun, J.; Wu, Z.; Cheng, H.; Zhang, Z.; Frost, R.L. A Raman spectroscopic comparison of calcite and dolomite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 117, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Berenblut, B.J.; Dawson, P.; Wilkinson, G.R. The Raman spectrum of gypsum. Spectrochim. Acta Part A Mol. Spectrosc. 1971, 27, 1849–1863. [Google Scholar] [CrossRef]
- Colomban, P.; Kırmızı, B. Non-invasive on-site Raman study of polychrome and white enamelled glass artefacts in imitation of porcelain assigned to Bernard Perrot and his followers. J. Raman Spectrosc. 2020, 51, 133–146. [Google Scholar] [CrossRef]
- Frost, R.L. An infrared and Raman spectroscopic study of natural zinc phosphates. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2004, 60, 1439–1445. [Google Scholar] [CrossRef] [PubMed]
- Colomban, P. Polymerization degree and Raman identification of ancient glasses used for jewellery, ceramics enamels and mosaics. J. Non-Cryst. Solids 2003, 323, 180–187. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, S.; Huang, Y.; Zhao, J.; Tong, X.; Chen, X. U-Pb ages, O isotope compositions, Raman spectrum, and geochemistry of cassiterites from the Xi’ao copper-tin polymetallic deposit in Gejiu District, Yunnan Province. Minerals 2019, 9, 212. [Google Scholar] [CrossRef]
- Colomban, P. Raman Spectrometry, A unique tool for on-site analysis and identification of ancient ceramics and glasses. Mater. Res. Soc. Symp. Proc. 2005, 852, OO8.3.1. [Google Scholar] [CrossRef]
- Kamura, S.; Tani, T.; Matsuo, H.; Onaka, Y.; Fujisawa, T.; Unno, M. New probe for porcelain glazes y luminescence at Near-Infrared excitation. ACS Omega 2021, 6, 7829–7833. [Google Scholar] [CrossRef]
- Tite, M.; Pradell, T.; Shortland, A. Discovery, production and use of tin-based opacifiers in glasses, enamels and glazes from the late iron age onwards: A reassessment. Archaeometry 2008, 50, 67–84. [Google Scholar] [CrossRef]
- Burlot, J.; Vangu, D.; Bellot-Gurlet, L.; Colomban, P. Raman Identification of pigments and opacifiers: Interest and limitation of multivariate analysis by comparison with solid state spectroscopical approach_II. Arsenic-based opacifiers and relation with cobalt ores. J. Raman Spectrosc 2024, 55, 184–199. [Google Scholar] [CrossRef]
- Colomban, P.; Ngo, A.-T.; Fournery, N. Non-Invasive Raman Analysis of 18th Century Chinese Export/Armorial Overglazed Porcelain: Identification of the Different Enameling Techniques. Heritage 2022, 5, 233–259. [Google Scholar] [CrossRef]
- Hassan, H.K.; Torell, L.M.; Börjesson, L.; Doweidar, H. Structural changes of B2O3 through the liquid-glass transition range: A Raman-scattering study. Phys. Rev. B 1992, 45, 12797. [Google Scholar] [CrossRef] [PubMed]
- Ciceo-Lucatel, R.; Ardelean, R. FT-IR and Raman study of silver lead borate-based glasses. J. Non-Crystall. Solids 2007, 353, 2020–2024. [Google Scholar] [CrossRef]
- Satyanarayana, T.; Kityk, I.V.; Piasecki, M.; Bragiel, P.; Brik, M.G.; Gandhi, Y.; Veeraiah, N. Structural investigations on PbO–Sb2O3–B2O3:CoO glass ceramics by means of spectroscopic and dielectric studies. J. Phys. Condens. Matter 2009, 21, 245104. [Google Scholar] [CrossRef]
- Moshkina, E.; Gudim, I.; Temerov, V.; Krylov, A. Temperature-dependent absorption lines observation in Raman spectra of SmFe3(BO3)4 ferroborate. J. Raman Spectrosc. 2018, 49, 1732–1735. [Google Scholar] [CrossRef]
- Maggetti, M.; D’Albis, A. Phase and compositional analysis of a Sèvres soft paste porcelain plate from 1781, with a review of early porcelain techniques. Eur. J. Mineral. 2017, 29, 347–367. [Google Scholar] [CrossRef]
- Burlot, J.; Colomban, P.; Bellot-Gurlet, L.; Lemasson, Q.; Pichon, L. Non-invasive analyze of boron and lithium in 18th century Chinese porcelain enamel and glaze: A PIXE/PIGE study. J. Eur. Ceram. Soc. 2024, 44, 116746. [Google Scholar] [CrossRef]
- Michael, S.; Shortland, A.J.; Schibille, N.; Degryse, P. New Data on the Soda Flux Used in the Production of Iznik Glazes and Byzantine Glasses. Archaeometry 2016, 58, 57–67. [Google Scholar] [CrossRef]
- Ma, H.; Henderson, J.; Cui, J.; Chen, K. Glassmaking of the Qing Dynasty: A review, new data, and new insights. Adv. Archaeomaterials 2020, 1, 27–35. [Google Scholar] [CrossRef]
- Pinto, A.; Sciau, P.; Zhu, T.Q.; Zhao, B.; Groenen, E.S. Raman study of Ming porcelain dark spots: Probing Mn-rich spinels. J. Raman Spectrosc. 2019, 50, 711–719. [Google Scholar] [CrossRef]
- Froment, F.; Tournié, A.; Colomban, P. Raman identification of natural red to yellow pigments: Ochre and iron-containing ores. J. Raman Spectrosc. 2008, 39, 560–568. [Google Scholar] [CrossRef]
- Demirsar Arli, B.; Simsek Franci, G.; Kaya, S.; Arli, H.; Colomban, P. Portable X-ray Fluorescence (p-XRF) Uncertainty Estimation for Glazed Ceramic Analysis: Case of Iznik Tiles. Heritage 2020, 3, 1302–1329. [Google Scholar] [CrossRef]
- Simsek, G.; Unsalan, O.; Bayraktar, K.; Colomban, P. On-site pXRF analysis of glaze composition and colouring agents of “Iznik” tiles at Edirne mosques (15th and 16th-centuries). Ceram. Int. 2019, 45, 595–605. [Google Scholar] [CrossRef]
Shard | Type | Si | Al | Si/Al | Mg | Σ | Pb | Sn | Pb/Sn | P | Fe | Ti | Co | Cr |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MPP1 | İznik | 19.29 | 2.85 | 6.77 | 0.31 | 6.29 | 3.22 | 0.31 | 10.4 | 0.43 | 0.02 | - | - | - |
MPP2+ | İznik | 9.26 | 4.38 | 2.11 | 0.62 | 4 | 2.13 | 0.04 | 53.2 | 4.26 | 0.03 | 0.03 | - | - |
MPP3 | İznik | 31.98 | 1.65 | 19.38 | 0.24 | 3.64 | 0.23 | - | - | 0.43 | 0.15 | - | - | - |
MP1 a | İznik | 37.8 | 1.21 | 31.24 | 0.38 | 2.89 | 0.23 | - | - | 0.4 | 0.55 | 0.05 | - | 0.15 |
MP2 | İznik | 35.77 | 1.21 | 29.56 | 0.31 | 3.03 | 0.54 | 0.05 | 10.8 | 0.72 | 0.21 | 0.03 | - | - |
MO1 a | mīnā’ī | 25.04 | 3.49 | 7.17 | 1.33 | 6.09 | 1.85 | 0.38 | 4.86 | 0.17 | 0.53 | 0.01 | 0.19 | 0.13 |
MO2 | mīnā’ī | 20.57 | 4.6 | 4.47 | 1.04 | 4.22 | 1.15 | 0.13 | 8.84 | 0.10 | 0.02 | 0.02 | - | - |
MFF1 | mīnā’ī | 25.58 | 3.61 | 7.09 | 1.68 | 8.45 | 2.6 | 1.23 | 2.1 | 0.15 | 0.15 | 0.02 | - | - |
MFF2 | mīnā’ī | 28.09 | 5.69 | 4.94 | 0.81 | 6.48 | - | - | - | 0.15 | 0.58 | 0.22 | 0.08 | |
MFF3 a | mīnā’ī | 27.06 | 5.54 | 4.88 | 1.24 | 5.24 | 1.89 | 0.39 | 4.85 | 0.14 | 0.23 | 0.03 | 0.14 | - |
MF1 | mīnā’ī | 25.52 | 4.34 | 5.88 | 0.55 | 5.1 | - | - | - | 0.14 | 0.21 | 0.23 | - | - |
MF2 | mīnā’ī | 18.37 | 3.61 | 5.09 | 0.64 | 5.29 | 1.17 | 1.89 | 0.61 | 0.65 | 0.29 | 0.04 |
Samples | Cream | White | Dark Blue | Blue | Light Blue | Red | Brown | Green | Turquoise | Black | |
---|---|---|---|---|---|---|---|---|---|---|---|
Dimension (cm) | M | ||||||||||
7 × 5.5 × 0.45 | MO | 150 513 685 960 1007 1115 | 832 995 1330 | 835 995 1330 | 633–775 832 990 1330 | 542 675 832 970 | |||||
7 × 4 × 0.3 | MP (İznik) | 985 1045 | 985 1045 | 840 975 1030 | |||||||
2 × 1 × 0.55 | MPP (İznik) | 985 1045 | 985 1045 | ||||||||
5 × 4 × 0.5 | MF | 633–775 985 | 613 830 675 | 200 280 535 950 1010 | 545 970 1008 | 550 685 955 | |||||
4 × 3 × 0.4 | MB | 633–775 820 9555 1120 | 475 985 1120 | 500 655 950 | |||||||
7.5 × 5 × 0.5 | M |
Shard | MO | MP (İznik) | MF | MPP (İznik) | MB | M | Bowl [17] |
---|---|---|---|---|---|---|---|
White | cassiterite | anatase? arsenate | cassiterite arsenate | - | |||
Cream | cassiterite | anatase | cassiterite | cassiterite | |||
Blue | arsenate | phosphate | cassiterite | arsenate | |||
Turquoise | no | cassiterite | cassiterite | ||||
Red/brown | hematite | - | hematite | - | hematite | ||
Orange | - | ||||||
Green | anatase | cassiterite | - | cassiterite | |||
Black | chromite | spinel | chromite | spinel | spinel |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colomban, P.; Simsek Franci, G.; Ngo, A.-T.; Gallet, X. Non-Invasive Raman and XRF Study of Mīnā’ī Decoration, the First Sophisticated Painted Enamels. Materials 2025, 18, 575. https://doi.org/10.3390/ma18030575
Colomban P, Simsek Franci G, Ngo A-T, Gallet X. Non-Invasive Raman and XRF Study of Mīnā’ī Decoration, the First Sophisticated Painted Enamels. Materials. 2025; 18(3):575. https://doi.org/10.3390/ma18030575
Chicago/Turabian StyleColomban, Philippe, Gulsu Simsek Franci, Anh-Tu Ngo, and Xavier Gallet. 2025. "Non-Invasive Raman and XRF Study of Mīnā’ī Decoration, the First Sophisticated Painted Enamels" Materials 18, no. 3: 575. https://doi.org/10.3390/ma18030575
APA StyleColomban, P., Simsek Franci, G., Ngo, A.-T., & Gallet, X. (2025). Non-Invasive Raman and XRF Study of Mīnā’ī Decoration, the First Sophisticated Painted Enamels. Materials, 18(3), 575. https://doi.org/10.3390/ma18030575