Antiproliferative Effect of Methanolic Extract of Vernonia greggii (Asteraceae) on Human Tumoral HeLa Cells Nanoencapsulated into PLGA-Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Cell Lines
2.2. Plant Material
2.3. Plant Extraction
2.4. Preliminary Phytochemical Screen
2.5. Chromatographic Analysis
2.6. Development of the NPs
2.7. Characterization of the NPs
Encapsulation Efficiency
2.8. Cytotoxicity Assay
2.9. Nucleus Contrast DAPI Assay
2.10. Hemolytic Assay
2.11. Statistics
3. Results
3.1. Extraction Yields and Phytochemical Analysis
3.2. Chromatographic Analysis
3.3. Cytotoxic Activity of V. greggii Extract and V. greggii Fractions
3.4. Polymeric Nanoparticle Development
3.5. Cytotoxic Activity of NPs
3.6. DAPI Assay
3.7. Hemolytic Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Roy, P.S.; Saikia, B.J. Cancer and Cure: A Critical Analysis. Indian J. Cancer 2016, 53, 441–442. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Reynoso-Noverón, N.; Torres-Domínguez, J.A.; Morales-Juárez, L.; Mohar-Betancourt, A. Analysis of Cancer Mortality in Mexico Using the Results of the Global Burden of Disease 2021 Study. Gac. Med. Mex. 2023, 159, 574–581. [Google Scholar] [CrossRef]
- Barrera-Cortés, R.I.; Rodriguez-Torres, E.E.; Vázquez-Mendoza, E.; Ruvalcaba-Ledezma, J.C.; Soria-Jasso, L.E.; Ortiz, M.I.; Fernández-Martínez, E. Liver Cancer in Hidalgo State, Mexico: Analysis of the Status, Risk Factors and Regional Public Health Policy Requirements: A Cross-Sectional Correlational Study. Sao Paulo Med. J. 2022, 140, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Barquet-Muñoz, S.A.; Arteaga-Gómez, C.; Díaz-López, E.; Rodríguez-Trejo, A.; Marquez-Acosta, J.; Aranda-Flores, C. Current Status and Challenges in Timely Detection of Cervical Cancer in Mexico: Expert Consensus. Front. Oncol. 2024, 14, 1383105. [Google Scholar] [CrossRef] [PubMed]
- Sokale, I.O.; Thrift, A.P.; Montealegre, J.; Adekanmbi, V.; Chido-Amajuoyi, O.G.; Amuta, A.; Reitzel, L.R.; Oluyomi, A.O. Geographic Variation in Late-Stage Cervical Cancer Diagnosis. JAMA Netw. Open 2023, 6, e2343152. [Google Scholar] [CrossRef] [PubMed]
- Lycke, K.D.; Kahlert, J.; Petersen, L.K.; Damgaard, R.K.; Cheung, L.C.; Gravitt, P.E.; Hammer, A. Untreated Cervical Intraepithelial Neoplasia Grade 2 and Subsequent Risk of Cervical Cancer: Population Based Cohort Study. BMJ 2023, 383, e075925. [Google Scholar] [CrossRef]
- Tienda-Vázquez, M.A.; Melchor-Martínez, E.M.; Elizondo-Luévano, J.H.; Parra-Saldívar, R.; Lara-Ortiz, J.S.; Luna-Sosa, B.; Scheckhuber, C.Q. Antidiabetic Plants for the Treatment of Type 2 Diabetes Mellitus and Associated Bacterial Infections. Processes 2023, 11, 1299. [Google Scholar] [CrossRef]
- Tienda-Vázquez, M.A.; Morreeuw, Z.P.; Sosa-Hernández, J.E.; Cardador-Martínez, A.; Sabath, E.; Melchor-Martínez, E.M.; Iqbal, H.M.N.; Parra-Saldívar, R. Nephroprotective Plants: A Review on the Use in Pre-Renal and Post-Renal Diseases. Plants 2022, 11, 818. [Google Scholar] [CrossRef]
- Busari, I.O.; Soetan, K.O.; Aiyelaagbe, O.O.; Babayemi, O.J. Ethnoveterinary Study of Plants Used by Fulani Agropastoralists for Treating Livestock Diseases in Ido Agrarian Community of Oyo State, Nigeria. Acta Ecol. Sin. 2021, 41, 560–565. [Google Scholar] [CrossRef]
- Álvarez Castro, E.; Cambeiro, F.O. Actividad Biológica de Los Flavonoides (I). Acción Frente al Cáncer. Offarm 2003, 22, 130–135. [Google Scholar]
- De La Cruz-Jiménez, L.; Hernández-Torres, M.A.; Monroy-García, I.N.; Rivas-Morales, C.; Verde-Star, M.J.; Gonzalez-Villasana, V.; Viveros-Valdez, E. Biological Activities of Seven Medicinal Plants Used in Chiapas, Mexico. Plants 2022, 11, 1790. [Google Scholar] [CrossRef] [PubMed]
- Lucía, C.-P.A.; Jacqueline, B.-R.; Alberto, B.-R.L.; David, B.-A.; Beatriz, R.-A. Actualized Inventory of Medicinal Plants Used in Traditional Medicine in Oaxaca, Mexico. J. Ethnobiol. Ethnomed. 2021, 17, 7. [Google Scholar] [CrossRef]
- Lock, O.; Castillo, P.; Doroteo, V.; Rojas, R. Antioxidant Activity in Vitro of Selected Peruvian Medicinal Plants. Acta Hortic. 2005, 675, 103–106. [Google Scholar] [CrossRef]
- Redonda-Martínez, R.; Pliscoff, P.; Moreira-Muñoz, A.; Martínez Salas, E.M.; Samain, M.-S. Towards Conservation of the Remarkably High Number of Daisy Trees (Asteraceae) in Mexico. Plants 2021, 10, 534. [Google Scholar] [CrossRef] [PubMed]
- Sobrinho, A.C.N.; de Souza, E.B.; dos Santos Fontenelle, R.O. A Review on Antimicrobial Potential of Species of the Genus Vernonia (Asteraceae). J. Med. Plants Res. 2015, 9, 838–850. [Google Scholar] [CrossRef]
- Siniscalchi, C.M.; Loeuille, B.; Funk, V.A.; Mandel, J.R.; Pirani, J.R. Phylogenomics Yields New Insight Into Relationships Within Vernonieae (Asteraceae). Front. Plant Sci. 2019, 10, 1224. [Google Scholar] [CrossRef]
- Rolnik, A.; Olas, B. The Plants of the Asteraceae Family as Agents in the Protection of Human Health. Int. J. Mol. Sci. 2021, 22, 3009. [Google Scholar] [CrossRef]
- Roblero-Bartolón, G.V.; Ramón-Gallegos, E. Use of Nanoparticles (NP) in Photodynamic Therapy (PDT) against Cancer. Gac. Med. Mex. 2015, 151, 85–98. [Google Scholar]
- Cardoso, R.V.; Pereira, P.R.; Freitas, C.S.; Paschoalin, V.M.F. Trends in Drug Delivery Systems for Natural Bioactive Molecules to Treat Health Disorders: The Importance of Nano-Liposomes. Pharmaceutics 2022, 14, 2808. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, C. Tuning the Size of Poly(Lactic-co-glycolic Acid) (PLGA) Nanoparticles Fabricated by Nanoprecipitation. Biotechnol. J. 2018, 13, 1700203. [Google Scholar] [CrossRef]
- Tabatabaei Mirakabad, F.S.; Nejati-Koshki, K.; Akbarzadeh, A.; Yamchi, M.R.; Milani, M.; Zarghami, N.; Zeighamian, V.; Rahimzadeh, A.; Alimohammadi, S.; Hanifehpour, Y.; et al. PLGA-Based Nanoparticles as Cancer Drug Delivery Systems. Asian Pac. J. Cancer Prev. 2014, 15, 517–535. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Gothwal, A.; Sharma, A.K.; Kesharwani, P.; Gupta, L.; Iyer, A.K.; Gupta, U. PLGA Nanoparticles and Their Versatile Role in Anticancer Drug Delivery. Crit. Rev. Ther. Drug Carrier Syst. 2016, 33, 159–193. [Google Scholar] [CrossRef] [PubMed]
- Danhier, F.; Ansorena, E.; Silva, J.M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-Based Nanoparticles: An Overview of Biomedical Applications. J. Control. Release 2012, 161, 505–522. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.W.; Tan, W.S.; Ho, K.L.; Mariatulqabtiah, A.R.; Abu Kasim, N.H.; Abd. Rahman, N.; Wong, T.W.; Chee, C.F. Challenges and Complications of Poly(Lactic-Co-Glycolic Acid)-Based Long-Acting Drug Product Development. Pharmaceutics 2022, 14, 614. [Google Scholar] [CrossRef]
- Chong-Cerda, R.; Levin, L.; Castro-Ríos, R.; Hernández-Luna, C.E.; González-Horta, A.; Gutiérrez-Soto, G.; Chávez-Montes, A. Nanoencapsulated Laccases Obtained by Double-Emulsion Technique. Effects on Enzyme Activity PH-Dependence and Stability. Catalysts 2020, 10, 1085. [Google Scholar] [CrossRef]
- Pacheco-Ordaz, A.; Sánchez-García, E.; Quintanilla-Licea, R.; Bazaldúa-Rodríguez, A.F.; Pérez-Hernández, R.A.; Hernández-García, M.E.; Báez-González, J.G.; Castro-Ríos, R.; Elizondo-Luévano, J.H.; Chávez-Montes, A. Amoebicidal and Trichomonicidal Capacity of Polymeric Nanoparticles Loaded with Extracts of the Plants Curcuma longa (Zingiberaceae) and Berberis vulgaris (Berberidaceae). Rev. Biol. Trop. 2022, 70, 319–331. [Google Scholar] [CrossRef]
- Amjadi, I.; Rabiee, M.; Hosseini, M.-S. Anticancer Activity of Nanoparticles Based on PLGA and Its Co-Polymer: In-Vitro Evaluation. Iran J. Pharm. Res. 2013, 12, 623–634. [Google Scholar]
- Amjadi, I.; Mohajeri, M.; Borisov, A.; Hosseini, M.-S. Antiproliferative Effects of Free and Encapsulated Hypericum perforatum L. Extract and Its Potential Interaction with Doxorubicin for Esophageal Squamous Cell Carcinoma. J. Pharmacopunct. 2019, 22, 102–108. [Google Scholar] [CrossRef]
- Ibrahim, W.N.; Muizzuddin Bin Mohd Rosli, L.; Doolaanea, A.A. Formulation, Cellular Uptake and Cytotoxicity of Thymoquinone-Loaded PLGA Nanoparticles in Malignant Melanoma Cancer Cells. Int. J. Nanomed. 2020, 15, 8059–8074. [Google Scholar] [CrossRef]
- Azzazy, H.M.E.-S.; Abdelnaser, A.; Al Mulla, H.; Sawy, A.M.; Shamma, S.N.; Elhusseiny, M.; Alwahibi, S.; Mahdy, N.K.; Fahmy, S.A. Essential Oils Extracted from Boswellia sacra Oleo Gum Resin Loaded into PLGA-PCL Nanoparticles: Enhanced Cytotoxic and Apoptotic Effects against Breast Cancer Cells. ACS Omega 2023, 8, 1017–1025. [Google Scholar] [CrossRef]
- Elizondo-Luevano, J.H.; Verde-Star, J.; González-Horta, A.; Castro-Ríos, R.; Hernández-García, M.E.; Chávez-Montes, A. In Vitro Effect of Methanolic Extract of Argemone mexicana against Trichomonas vaginalis. Korean J. Parasitol. 2020, 58, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Montes, A.; Bazaldúa Rodríguez, A.F.; Larqué-García, H.; Gutiérrez-Soto, G.; Elizondo-Luévano, J.H. Actividad Antiparasitaria In-Vitro Del Extracto Metanólico de Kalanchoe daigremontiana (Crassulaceae) En Contra de Entamoeba histolytica (Amoebida: Entamoebidae) y Trichomonas vaginalis (Trichomonadida: Trichomonadidae). Sci. Agric. Vita 2024, 1, 1–9. [Google Scholar] [CrossRef]
- Hernández-Marín, D.A.; Guevara-Lara, F.; Rivas-Morales, C.; Verduzco-Martínez, J.A.; Galindo-Rodriguez, S.A.; Sánchez-García, E. Biological Activity of Nothoscordum bivalve (L.) Britton and Parthenium incanum Kunth Extracts. Indian J. Tradit. Knowl. 2018, 17, 699–706. [Google Scholar]
- Elizondo-Luévano, J.H.; Rodríguez-Garza, N.E.; Bazaldúa-Rodríguez, A.F.; Romo-Sáenz, C.I.; Tamez-Guerra, P.; Verde-Star, M.J.; Gomez-Flores, R.; Quintanilla-Licea, R. Cytotoxic, Anti-Hemolytic, and Antioxidant Activities of Ruta chalepensis L. (Rutaceae) Extract, Fractions, and Isolated Compounds. Plants 2023, 12, 2203. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Garza, N.E.; Quintanilla-Licea, R.; Romo-Sáenz, C.I.; Elizondo-Luevano, J.H.; Tamez-Guerra, P.; Rodríguez-Padilla, C.; Gomez-Flores, R. In Vitro Biological Activity and Lymphoma Cell Growth Inhibition by Selected Mexican Medicinal Plants. Life 2023, 13, 958. [Google Scholar] [CrossRef]
- Busari, I.O.; Soetan, K.O.; Aiyelaagbe, O.O.; Babayemi, O.J. Phytochemical Screening and in Vitro Anthelmintic Activity of Methanolic Extract of Terminalia glaucescens Leaf on Haemonchus contortus Eggs. Acta Trop. 2021, 223, 106091. [Google Scholar] [CrossRef] [PubMed]
- Elizondo-Luevano, J.H.; Castro-Ríos, R.; Parra-Saldívar, R.; Larqué-García, H.; Garza-Tapia, M.; Melchor-Martínez, E.M.; Chávez-Montes, A. Influence of the Polymer and Solvent Variables on the Nanoencapsulation of the Flavonoid Quercetin: Preliminary Study Based on Eudragit® Polymers. Appl. Sci. 2023, 13, 7816. [Google Scholar] [CrossRef]
- Clogston, J.D.; Patri, A.K. Zeta Potential Measurement. In Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2011; Volume 697, pp. 63–70. [Google Scholar]
- Quintanilla-Licea, R.; Rodríguez-Garza, N.E.; Torres-Hernández, Á.D.; Verde-Star, M.J.; Elizondo-Luévano, J.H. Actividad Citotóxica, Antioxidante y Antihemolítica Del Extracto Metanólico de Cymbopogon citratus (DC.) Stapf. Investig. Desarro. Cienc. Tecnol. Aliment. 2023, 8, 957–964. [Google Scholar] [CrossRef]
- Guillén-Meléndez, G.A.; Villa-Cedillo, S.A.; Pérez-Hernández, R.A.; Castillo-Velázquez, U.; Salas-Treviño, D.; Saucedo-Cárdenas, O.; Montes-de-Oca-Luna, R.; Gómez-Tristán, C.A.; Garza-Arredondo, A.J.; Zamora-Ávila, D.E.; et al. Cytotoxic Effect In Vitro of Acalypha monostachya Extracts over Human Tumor Cell Lines. Plants 2021, 10, 2326. [Google Scholar] [CrossRef] [PubMed]
- López-Villarreal, S.M.; Elizondo-Luévano, J.H.; Pérez-Hernández, R.A.; Sánchez-García, E.; Verde-Star, M.J.; Castro-Ríos, R.; Garza-Tapia, M.; Rodríguez-Luis, O.E.; Chávez-Montes, A. Preliminary Study of the Antimicrobial, Anticoagulant, Antioxidant, Cytotoxic, and Anti-Inflammatory Activity of Five Selected Plants with Therapeutic Application in Dentistry. Int. J. Environ. Res. Public Health 2022, 19, 7927. [Google Scholar] [CrossRef] [PubMed]
- Guillén-Meléndez, G.A.; Soto-Domínguez, A.; de Jesús Loera-Arias, M.; Castillo-Velázquez, U.; Villa-Cedillo, S.A.; Piña-Mendoza, E.I.; Estrada-Castillón, E.; Chávez-Montes, A.; González-Alcocer, A.; Becerra-Verdín, E.M.; et al. Effect of Methanolic Extract of Mimosa malacophylla A.Gray in Vero and HEK-293 Cell Lines, and in the Morphology of Kidney and Bladder of Rats with Induced Urolithiasis. J. Ethnopharmacol. 2022, 297, 115552. [Google Scholar] [CrossRef] [PubMed]
- Elizondo-Luévano, J.H.; Hernández-García, M.E.; Pérez-Narváez, O.A.; Castro-Ríos, R.; Chávez-Montes, A. Berberina, Curcumina y Quercetina Como Potenciales Agentes Con Capacidad Antiparasitaria. Rev. Biol. Trop. 2020, 68, 1241–1249. [Google Scholar] [CrossRef]
- Bézivin, C.; Tomasi, S.; Lohézic-Le Dévéhat, F.; Boustie, J. Cytotoxic Activity of Some Lichen Extracts on Murine and Human Cancer Cell Lines. Phytomedicine 2003, 10, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Mesdaghinia, A.; Pourpak, Z.; Naddafi, K.; Nodehi, R.N.; Alizadeh, Z.; Rezaei, S.; Mohammadi, A.; Faraji, M. An in Vitro Method to Evaluate Hemolysis of Human Red Blood Cells (RBCs) Treated by Airborne Particulate Matter (PM10). MethodsX 2019, 6, 156–161. [Google Scholar] [CrossRef]
- Pakpisutkul, J.; Suwapraphan, J.; Sripayak, N.; Sitkhuntod, N.; Loyrat, S.; Yahayo, W.; Supabphol, R. The Effects of Vernonia cinerea Less Extracts on Antioxidant Gene Expression in Colorectal Cancer Cells. Asian Pac. J. Cancer Prev. 2022, 23, 3923–3930. [Google Scholar] [CrossRef] [PubMed]
- Appadath Beeran, A.; Maliyakkal, N.; Rao, C.M.; Udupa, N. The Enriched Fraction of Vernonia cinerea L. Induces Apoptosis and Inhibits Multi-Drug Resistance Transporters in Human Epithelial Cancer Cells. J. Ethnopharmacol. 2014, 158, 33–42. [Google Scholar] [CrossRef]
- Thomas, E.; Gopalakrishnan, V.; Somasagara, R.R.; Choudhary, B.; Raghavan, S.C. Extract of Vernonia condensata, Inhibits Tumor Progression and Improves Survival of Tumor-Allograft Bearing Mouse. Sci. Rep. 2016, 6, 23255. [Google Scholar] [CrossRef] [PubMed]
- Rezvantalab, S.; Drude, N.I.; Moraveji, M.K.; Güvener, N.; Koons, E.K.; Shi, Y.; Lammers, T.; Kiessling, F. PLGA-Based Nanoparticles in Cancer Treatment. Front Pharmacol. 2018, 9, 1260. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Kim, C.; Saylor, D.M.; Koo, D. Polymer Degradation and Drug Delivery in PLGA-based Drug–Polymer Applications: A Review of Experiments and Theories. J. Biomed. Mater. Res. B Appl. Biomater. 2017, 105, 1692–1716. [Google Scholar] [CrossRef] [PubMed]
- Therin, M.; Christel, P.; Li, S.; Garreau, H.; Vert, M. In Vivo Degradation of Massive Poly(α-Hydroxy Acids): Validation of In Vitro Findings. Biomaterials 1992, 13, 594–600. [Google Scholar] [CrossRef]
- Li, S.; Garreau, H.; Vert, M. Structure-Property Relationships in the Case of the Degradation of Massive Poly(α-Hydroxy Acids) in Aqueous Media. J. Mater. Sci. Mater. Med. 1990, 1, 198–206. [Google Scholar] [CrossRef]
- Vicari, L.; Musumeci, T.; Giannone, I.; Adamo, L.; Conticello, C.; De Maria, R.; Pignatello, R.; Puglisi, G.; Gulisano, M. Paclitaxel Loading in PLGA Nanospheres Affected the In Vitro Drug Cell Accumulation and Antiproliferative Activity. BMC Cancer 2008, 8, 212. [Google Scholar] [CrossRef]
- Kimani, N.M.; Backhaus, S.; Matasyoh, J.C.; Kaiser, M.; Herrmann, F.C.; Schmidt, T.J.; Langer, K. Preparation of Sesquiterpene Lactone-Loaded PLA Nanoparticles and Evaluation of Their Antitrypanosomal Activity. Molecules 2019, 24, 2110. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.; Khor, K.Z.; Moses, E.J.; Lim, V.; Aziz, M.Y.; Abdul Samad, N. In Vitro Anticancer Effects of Vernonia amygdalina Leaf Extract and Green-Synthesised Silver Nanoparticles. Int. J. Nanomed. 2021, 16, 3599–3612. [Google Scholar] [CrossRef]
- Wong, F.C.; Woo, C.C.; Hsu, A.; Tan, B.K.H. The Anti-Cancer Activities of Vernonia amygdalina Extract in Human Breast Cancer Cell Lines Are Mediated through Caspase-Dependent and P53-Independent Pathways. PLoS ONE 2013, 8, e78021. [Google Scholar] [CrossRef] [PubMed]
- Unuofin, J.O.; Otunola, G.A.; Afolayan, A.J. Inhibition of Key Enzymes Linked to Obesity and Cytotoxic Activities of Whole Plant Extracts of Vernonia mesplilfolia Less. Processes 2019, 7, 841. [Google Scholar] [CrossRef]
- Shoaib, M.; Shah, I.; Ali, N.; Adhikari, A.; Tahir, M.N.; Shah, S.W.A.; Ishtiaq, S.; Khan, J.; Khan, S.; Umer, M.N. Sesquiterpene Lactone! A Promising Antioxidant, Anticancer and Moderate Antinociceptive Agent from Artemisia macrocephala Jacquem. BMC Complement. Altern. Med. 2017, 17, 27. [Google Scholar] [CrossRef] [PubMed]
- Trendafilova, A.; Ivanova, V.; Rangelov, M.; Todorova, M.; Ozek, G.; Yur, S.; Ozek, T.; Aneva, I.; Veleva, R.; Moskova-Doumanova, V.; et al. Caffeoylquinic Acids, Cytotoxic, Antioxidant, Acetylcholinesterase and Tyrosinase Enzyme Inhibitory Activities of Six Inula Species from Bulgaria. Chem. Biodivers. 2020, 17, e2000051. [Google Scholar] [CrossRef] [PubMed]
- Amigo-Benavent, M.; Wang, S.; Mateos, R.; Sarriá, B.; Bravo, L. Antiproliferative and Cytotoxic Effects of Green Coffee and Yerba Mate Extracts, Their Main Hydroxycinnamic Acids, Methylxanthine and Metabolites in Different Human Cell Lines. Food Chem. Toxicol. 2017, 106, 125–138. [Google Scholar] [CrossRef]
- Sharopov, F.; Wetterauer, B.; Gulmurodov, I.; Khalifaev, D.; Safarzoda, R.; Sobeh, M.; Wink, M. Chlorogenic and 1,5-Dicaffeoylquinic Acid-Rich Extract of Topinambur (Helianthus tuberosus L.) Exhibits Strong Antioxidant Activity and Weak Cytotoxicity. Pharm. Chem. J. 2020, 54, 745–754. [Google Scholar] [CrossRef]
- Takemura, T.; Urushisaki, T.; Fukuoka, M.; Hosokawa-Muto, J.; Hata, T.; Okuda, Y.; Hori, S.; Tazawa, S.; Araki, Y.; Kuwata, K. 3,4-Dicaffeoylquinic Acid, a Major Constituent of Brazilian Propolis, Increases TRAIL Expression and Extends the Lifetimes of Mice Infected with the Influenza A Virus. Evid.-Based Complement. Altern. Med. 2012, 2012, 946867. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Oboh, G. Nutritive Value and Haemolytic Properties (In Vitro) of the Leaves of Vernonia amygdalina on Human Erythrocyte. Nutr. Health 2006, 18, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Saleemi, M.A.; Alallam, B.; Yong, Y.K.; Lim, V. Synthesis of Zinc Oxide Nanoparticles with Bioflavonoid Rutin: Characterisation, Antioxidant and Antimicrobial Activities and In Vivo Cytotoxic Effects on Artemia nauplii. Antioxidants 2022, 11, 1853. [Google Scholar] [CrossRef] [PubMed]
- Alidoust, F.A.; Rasti, B.; Zamani, H.; Mirpour, M.; Mirzaie, A. Rutin-Coated Zinc Oxide Nanoparticles: A Promising Antivirulence Formulation against Pathogenic Bacteria. World J. Microbiol. Biotechnol. 2024, 40, 184. [Google Scholar] [CrossRef] [PubMed]
- Firouzai-Amandi, A.; Tarahomi, M.; Rahmani Youshanlouie, H.; Mosaddeghi Heris, R.; Jafari-Gharabaghlou, D.; Zarghami, N.; Dadashpour, M. Development, Characterization, and In Vitro Evaluation of Cytotoxic Activity of Rutin Loaded PCL-PEG Nanoparticles Against Skov3 Ovarian Cancer Cell. Asian Pac. J. Cancer Prev. 2022, 23, 1951–1957. [Google Scholar] [CrossRef] [PubMed]
- Vijayalakshmi, S.; Rajasekar, A.; Veeraraghavan, V.P.; Ghidan, A.Y.; Al Antary, T.M.; Karthikkumar, V.; Damodaran, L.P.M.; Vinayagam, R.; David, E. The Pro-Apoptotic and Cytotoxic Efficacy of Polydatin Encapsulated Poly(Lactic-Co-Glycolic Acid) (PLGA) Nanoparticles. Process Biochem. 2021, 111, 210–218. [Google Scholar] [CrossRef]
- Caldas, L.A.; Horvath, R.O.; Ferreira-Silva, G.Á.; Ferreira, M.J.P.; Ionta, M.; Sartorelli, P. Calein C, a Sesquiterpene Lactone Isolated From Calea pinnatifida (Asteraceae), Inhibits Mitotic Progression and Induces Apoptosis in MCF-7 Cells. Front. Pharmacol. 2018, 9, 1191. [Google Scholar] [CrossRef]
- Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.M.; Cardoso, M.C. Chromatin Condensation Modulates Access and Binding of Nuclear Proteins. FASEB J. 2010, 24, 1066–1072. [Google Scholar] [CrossRef] [PubMed]
Test | Chemical Group | ME | F-Me | F-He | F-Ac |
---|---|---|---|---|---|
Liebermann-Burchard | Sterols, Triterpenes | ++ | ++ | + | − |
NaOH | Coumarins | + | ++ | ++ | +++ |
Baljet | Sesquiterpene Lactones | ++ | +++ | − | ++ |
Sulfuric acid | Quinones | − | − | − | +++ |
Saponins | Saponins | − | − | − | − |
Shinoda | Flavonoids | +++ | − | − | +++ |
Ferric Chloride | Tannins | ++ | +++ | − | +++ |
Anthrones | Carbohydrates | ++ | +++ | + | +++ |
Dragendorff | Alkaloids | − | − | − | − |
Extraction yields | % | 32.96 | 0.34 | 17.98 | 16.65 |
Retention Time (min) | λmax (nm) | [M-H]− | Fragment Ions | Compound |
---|---|---|---|---|
1.9 | 324 | 353 | 191, 179, 135, 173 | Caffeoylquinic acid derivative |
2.6 | 325 | 353 | 135,173, 179, 191 | Caffeoylquinic acid derivative |
3.5 | 465 | 447, 375, 345, 327, 287, 201 | Quercetin glycoside | |
4.0 | 324 | 353 | 191, 179, 135, 173 | Caffeoylquinic acid derivative |
5.1 | 225, 292 | 653 | 635, 507, 491, 449, 359, 329, 301 | Dimethylquercetin-3-O-dihexoside |
6.8 | 325 | 353 | 191, 179, 173, 135 | Caffeoylquinic acid derivative |
10.1 | 205, 256, 317 | 431 | 311, 341, 283 | Vitexin |
10.5 | 202, 269, 319 | 609 | 301, 300, 271, 255 | Rutin |
10.9 | 204, 256, 335 | 463 | 301, 300, 271, 255, 179, 151 | Isoquercitrin |
11.6 | 328 | 515 | 353, 179, 335, 203, 191, 255, 299 | Dicaffeoylquinic acid derivative |
11.7 | 328 | 515 | 353, 191, 335, 179, 434, 173 | Dicaffeoylquinic acid derivative |
12.4 | 328 | 515 | 353, 203, 299, 255, 179, 317, 173 | Dicaffeoylquinic acid derivative |
12.9 | 326 | 515 | 353, 203, 299, 179, 173, 335, 255 | Dicaffeoylquinic acid derivative |
16.8 | 329 | 353 | 191, 179, 263, 335, 272 | Caffeoylquinic acid derivative |
17.0 | 329 | 353 | 179, 191, 135, 161, 251 | Caffeoylquinic acid derivative |
17.3 | 328 | 353 | 191, 179, 161, 355, 135, 173 | Caffeoylquinic acid derivative |
Treatment | IC50 (μg/mL) | SI | |
---|---|---|---|
HeLa | HaCat | ||
EM | 268.08 ± 31.63 c | ND | - |
F-Me | 4.33 ± 28.12 a | 4.78 ± 24.23 a | 1.10 |
F-Ac | 237.02 ± 43.78 c | 352.46 ± 29.05 c | 1.48 |
F-He | 103.04 ± 45.12 b | 158.89 ± 26.68 b | 1.54 |
Size (nm) | PDI | ζ Potential (mV) | ee % | dl % | |
---|---|---|---|---|---|
NPs F-Me | 146.90 ± 1.159 | 0.103 ± 0.010 | −23.30 ± 8.4 | 64.21 | 11.38 |
PLGA NPs | 141.10 ± 0.815 | 0.096 ± 0.013 | −20.20 ± 9.82 | - | - |
Treatment | IC50 (μg/mL) | SI | |
---|---|---|---|
HeLa | HaCat | ||
NPs F-Me | 289.94 ± 39.39 | 274.05 ± 35.65 | 0.94 |
Concentration | Hemolysis Percent (%) | |
---|---|---|
(μg/mL) | F-Me | NPs F-Me |
Negative control | 0.00 | 0.00 |
Positive control | 100.00 | 100.00 |
100 | 0.00 ± 0.22 | 0.00 ± 0.06 |
200 | 0.17 ± 0.48 | 0.00 ± 0.21 |
400 | 0.00 ± 0.10 | 0.00 ± 0.33 |
600 | 0.49 ± 0.89 | 0.00 ± 0.42 |
800 | 0.00 ± 0.45 | 14.18 ± 0.46 |
1000 | 0.13 ± 1.22 | 32.23 ± 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarez-Sandoval, J.; Guillen Melendez, G.A.; Pérez-Hernández, R.A.; Elizondo-Luevano, J.H.; Castro-Ríos, R.; Kačániová, M.; Montes de Oca-Saucedo, C.R.; Soto-Domínguez, A.; Chávez-Montes, A. Antiproliferative Effect of Methanolic Extract of Vernonia greggii (Asteraceae) on Human Tumoral HeLa Cells Nanoencapsulated into PLGA-Nanoparticles. Materials 2025, 18, 580. https://doi.org/10.3390/ma18030580
Alvarez-Sandoval J, Guillen Melendez GA, Pérez-Hernández RA, Elizondo-Luevano JH, Castro-Ríos R, Kačániová M, Montes de Oca-Saucedo CR, Soto-Domínguez A, Chávez-Montes A. Antiproliferative Effect of Methanolic Extract of Vernonia greggii (Asteraceae) on Human Tumoral HeLa Cells Nanoencapsulated into PLGA-Nanoparticles. Materials. 2025; 18(3):580. https://doi.org/10.3390/ma18030580
Chicago/Turabian StyleAlvarez-Sandoval, Jissell, Gloria A. Guillen Melendez, Raymundo A. Pérez-Hernández, Joel H. Elizondo-Luevano, Rocío Castro-Ríos, Miroslava Kačániová, Carlos R. Montes de Oca-Saucedo, Adolfo Soto-Domínguez, and Abelardo Chávez-Montes. 2025. "Antiproliferative Effect of Methanolic Extract of Vernonia greggii (Asteraceae) on Human Tumoral HeLa Cells Nanoencapsulated into PLGA-Nanoparticles" Materials 18, no. 3: 580. https://doi.org/10.3390/ma18030580
APA StyleAlvarez-Sandoval, J., Guillen Melendez, G. A., Pérez-Hernández, R. A., Elizondo-Luevano, J. H., Castro-Ríos, R., Kačániová, M., Montes de Oca-Saucedo, C. R., Soto-Domínguez, A., & Chávez-Montes, A. (2025). Antiproliferative Effect of Methanolic Extract of Vernonia greggii (Asteraceae) on Human Tumoral HeLa Cells Nanoencapsulated into PLGA-Nanoparticles. Materials, 18(3), 580. https://doi.org/10.3390/ma18030580