Mechanical and Thermal Properties of 3D-Printed Continuous Bamboo Fiber-Reinforced PE Composites
Abstract
:1. Introduction
2. Experimental Sections
2.1. Materials
2.2. Preparation of Continuous Bamboo Fibers
2.3. Printing Composites Filaments and Bulks
2.4. Characterization
3. Results and Discussion
3.1. Characterization and Performance Analysis of Alkali-Treated Bamboo Fibers
3.2. Performance of 3D-Printed Continuous Bamboo Fiber-Reinforced PE Composite Filaments
3.3. Performance and Morphology Analysis of the Printed Composite Bulks
3.4. Effect of Printing Parameters on Tensile Performance of Bulks
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kabir, S.M.F.; Mathur, K.; Seyam, A.-F.M. A critical review on 3D printed continuous fiber-reinforced composites: History, mechanism, materials and properties. Compos. Struct. 2020, 232, 111476. [Google Scholar] [CrossRef]
- Soutis, C. Carbon fiber reinforced plastics in aircraft construction. Mater. Sci. Eng. A 2005, 412, 171–176. [Google Scholar] [CrossRef]
- Stickel, J.M.; Nagarajan, M. Glass Fiber-Reinforced Composites: From Formulation to Application. Int. J. Appl. Glass Sci. 2012, 3, 122–136. [Google Scholar] [CrossRef]
- Pramudi, G.; Raharjo, W.W.; Ariawan, D.; Ubaidillah; Arifin, Z. Utilization of bamboo fiber in the development of environmentally friendly composite—A review. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1096, 012038. [Google Scholar] [CrossRef]
- Chen, C.; Li, Z.; Mi, R.; Dai, J.; Xie, H.; Pei, Y.; Li, J.; Qiao, H.; Tang, H.; Yang, B. Rapid processing of whole bamboo with exposed, aligned nanofibrils toward a high-performance structural material. ACS Nano 2020, 14, 5194–5202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Cai, S.; Li, Y.; Wang, Z.; Long, Y.; Yu, T.; Shen, Y. High performances of plant fiber reinforced composites—A new insight from hierarchical microstructures. Compos. Sci. Technol. 2020, 194, 108151. [Google Scholar] [CrossRef]
- Li, Z.; Chen, C.; Xie, H.; Yao, Y.; Zhang, X.; Brozena, A.; Li, J.; Ding, Y.; Zhao, X.; Hong, M.; et al. Sustainable high-strength macrofibres extracted from natural bamboo. Nat. Sustain. 2022, 5, 235–244. [Google Scholar] [CrossRef]
- Newcomb, B.A. Processing, structure, and properties of carbon fibers. Compos. Part Appl. Sci. Manuf. 2016, 91, 262–282. [Google Scholar] [CrossRef]
- Cevahir, A. 5—Glass fibers. In Fiber Technology for Fiber-Reinforced Composites; Seydibeyoğlu, M.Ö., Mohanty, A.K., Misra, M., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 99–121. [Google Scholar] [CrossRef]
- Peças, P.; Carvalho, H.; Salman, H.; Leite, M. Natural fibre composites and their applications: A review. J. Compos. Sci. 2018, 2, 66. [Google Scholar] [CrossRef]
- Gao, X.; Zhu, D.; Fan, S.; Rahman, M.Z.; Guo, S.; Chen, F. Structural and mechanical properties of bamboo fiber bundle and fiber/bundle reinforced composites: A review. J. Mater. Res. Technol. 2022, 19, 1162–1190. [Google Scholar] [CrossRef]
- Rao, G.S.; Debnath, K.; Mahapatra, R.N. Recycling and degradation behaviour of the bamboo fibre reinforced green composite fabricated by injection moulding. Sustain. Mater. Technol. 2024, 39, e00865. [Google Scholar] [CrossRef]
- Mousavi, S.R.; Zamani, M.H.; Estaji, S.; Tayouri, M.I.; Arjmand, M.; Jafari, S.H.; Nouranian, S.; Khonakdar, H.A. Mechanical properties of bamboo fiber-reinforced polymer composites: A review of recent case studies. J. Mater. Sci. 2022, 57, 3143–3167. [Google Scholar] [CrossRef]
- Chandekar, H.; Chaudhari, V.; Waigaonkar, S. A review of jute fiber reinforced polymer composites. Mater. Today Proc. 2020, 26, 2079–2082. [Google Scholar] [CrossRef]
- Borawski, A.; Szpica, D.; Mieczkowski, G. Laboratory Tests on the Possibility of Using Flax Fibers as a Plant-Origin Reinforcement Component in Composite Friction Materials for Vehicle Braking Systems. Materials 2024, 17, 2861. [Google Scholar] [CrossRef]
- Siva, R.; Sundar Reddy Nemali, S.; Kishore kunchapu, S.; Gokul, K.; Arun kumar, T. Comparison of mechanical properties and water absorption test on injection molding and extrusion—Injection molding thermoplastic hemp fiber composite. Mater. Today Proc. 2021, 47, 4382–4386. [Google Scholar] [CrossRef]
- Manaia, J.P.; Manaia, A. Interface modification, water absorption behaviour and mechanical properties of injection moulded short hemp fiber-reinforced thermoplastic composites. Polymers 2021, 13, 1638. [Google Scholar] [CrossRef]
- Moritzer, E.; Heiderich, G.; Hirsch, A. Fiber length reduction during injection molding. AIP Conf. Proc. 2019, 2055, 070001. [Google Scholar] [CrossRef]
- Yu, M.; Zhang, H.; Liu, Z.; Ge, Z.; Kong, F.; Shao, H.; Hu, X. Effects of fiber dimension and its distribution on the properties of lyocell and ramie fibers reinforced polylactide composites. Fibers Polym. 2019, 20, 1726–1732. [Google Scholar] [CrossRef]
- Patcharaphun, S.; Opaskornkul, G. Characterization of fiber length distribution in short andlong-glass-fiber reinforced polypropylene during injection molding process. Agric. Nat. Resour. 2008, 42, 392–397. [Google Scholar]
- Park, S.Y.; Song, Y.S. Fabrication and analysis of long fiber reinforced polypropylene prepared via injection molding. Macromol. Res. 2020, 28, 714–720. [Google Scholar] [CrossRef]
- Chin, S.C.; Tee, K.F.; Tong, F.S.; Ong, H.R.; Gimbun, J. Thermal and mechanical properties of bamboo fiber reinforced composites. Mater. Today Commun. 2020, 23, 100876. [Google Scholar] [CrossRef]
- Francucci, G.; Rodriguez, E. Processing of plant fiber composites by liquid molding techniques: An overview. Polym. Compos. 2016, 37, 718–733. [Google Scholar] [CrossRef]
- Huang, J.-K.; Young, W.-B. The mechanical, hygral, and interfacial strength of continuous bamboo fiber reinforced epoxy composites. Compos. Part B Eng. 2019, 166, 272–283. [Google Scholar] [CrossRef]
- Kallel, T.; Massardier-Nageotte, V.; Jaziri, M.; Gérard, J.; Elleuch, B. Compatibilization of pe/ps and pe/pp blends. i. effect of processing conditions and formulation. J. Appl. Polym. Sci. 2003, 90, 2475–2484. [Google Scholar] [CrossRef]
- Gilev, V.G.; Kondyurin, A.V.; Rusakov, S.V. Investigation of epoxy matrix viscosity in the initial stage of its formation. IOP Conf. Ser. Mater. Sci. Eng. 2017, 208, 012014. [Google Scholar] [CrossRef]
- Salim, M.S.; Ariawan, D.; Ahmad Rasyid, M.F.; Ahmad Thirmizir, M.Z.; Mat Taib, R.; Mohd. Ishak, Z.A. Effect of fibre surface treatment on interfacial and mechanical properties of non-woven kenaf fibre reinforced acrylic based polyester composites. Polym. Compos. 2019, 40, E214–E226. [Google Scholar] [CrossRef]
- Arsyad, M. Effect of alkali treatment on the coconut fiber surface. J. Eng. Appl. Sci. 2017, 12, 1870–1875. [Google Scholar]
- French, A.D. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 2013, 21, 885–896. [Google Scholar] [CrossRef]
- Xiao, S.; Chen, C.; Xia, Q.; Liu, Y.; Yao, Y.; Chen, Q.; Hartsfield, M.; Brozena, A.; Tu, K.; Eichhorn, S.J.; et al. Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. Science 2021, 374, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Marcuello, C.; Chabbert, B.; Berzin, F.; Bercu, N.B.; Molinari, M.; Aguié-Béghin, V. Influence of Surface Chemistry of Fiber and Lignocellulosic Materials on Adhesion Properties with Polybutylene Succinate at Nanoscale. Materials 2023, 16, 2440. [Google Scholar] [CrossRef] [PubMed]
- Serdeczny, M.P.; Comminal, R.; Pedersen, D.B.; Spangenberg, J. Numerical simulations of the mesostructure formation in material extrusion additive manufacturing. Addit. Manuf. 2019, 28, 419–429. [Google Scholar] [CrossRef]
- Zhou, M.; Si, L.; Chen, P.; Li, M.; Zhang, Y.; Zhou, H.; Li, D. Experimental investigation and numerical simulations of temperature and morphology in material extrusion additive manufacturing. Int. J. Adv. Manuf. Technol. 2022, 119, 4863–4876. [Google Scholar] [CrossRef]
Parameter | Unit | Value |
---|---|---|
Printing speed | mm/s | 5, 10, 15 |
The diameter of the nozzle | mm | 0.8 |
Temperature of the nozzle | °C | 190 |
Temperature of the hot plate | °C | 50, 60, 70 |
Tensile Strength/ MPa | Young’s Modulus/MPa | |
---|---|---|
Print PE | 7.7 ± 0.7 | 71.8 ± 1.8 |
U-CBF/PE | 10.4 ± 0.8 | 85.1 ± 2.5 |
T-CBF/PE | 15.6 ± 0.8 | 116.5 ± 4.9 |
Tensile Strength/MPa | Young’s Modulus/MPa | |
---|---|---|
Print PE | 6.3 ± 0.3 | 31.0 ± 1.0 |
U-CBF/PE | 7.5 ± 0.5 | 73.2 ± 1.3 |
T-CBF/PE | 11.1 ± 0.9 | 85.8 ± 0.6 |
Parameters | Value | Tensile Strength/MPa | Young’s Modulus/MPa |
---|---|---|---|
Velocity/mm/s | 5 | 12.4 ± 0.7 | 91.8 ± 6.0 |
10 | 11.1 ± 0.9 | 86.8 ± 1.1 | |
15 | 9.5 ± 0.5 | 57.4 ± 2.6 | |
Temperature/°C | 50 | 9.4 ± 0.8 | 73.4 ± 1.3 |
60 | 10.5 ± 0.6 | 86.2 ± 1.5 | |
70 | 11.1 ± 0.9 | 90.2 ± 2.1 | |
Thickness/mm | 0.3 | 11.1 ± 0.9 | 88.6 ± 3.4 |
0.4 | 9.1 ± 0.6 | 78.8 ± 2.5 | |
0.5 | 8.1 ± 0.5 | 46.3 ± 3.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, H.; Li, Q.; Chen, Y.; Liu, Y.; Jiang, N.; Wang, C. Mechanical and Thermal Properties of 3D-Printed Continuous Bamboo Fiber-Reinforced PE Composites. Materials 2025, 18, 593. https://doi.org/10.3390/ma18030593
Qiao H, Li Q, Chen Y, Liu Y, Jiang N, Wang C. Mechanical and Thermal Properties of 3D-Printed Continuous Bamboo Fiber-Reinforced PE Composites. Materials. 2025; 18(3):593. https://doi.org/10.3390/ma18030593
Chicago/Turabian StyleQiao, Haiyu, Qian Li, Yani Chen, Yayun Liu, Ning Jiang, and Chuanyang Wang. 2025. "Mechanical and Thermal Properties of 3D-Printed Continuous Bamboo Fiber-Reinforced PE Composites" Materials 18, no. 3: 593. https://doi.org/10.3390/ma18030593
APA StyleQiao, H., Li, Q., Chen, Y., Liu, Y., Jiang, N., & Wang, C. (2025). Mechanical and Thermal Properties of 3D-Printed Continuous Bamboo Fiber-Reinforced PE Composites. Materials, 18(3), 593. https://doi.org/10.3390/ma18030593