Nanosecond Laser Processing of Titanium in Organic Liquids as a Method for Obtaining Titanium Carbide Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laser Ablation Experiments
2.2. Characterization Techniques
3. Results and Discussion
3.1. Morphology of the Coatings Obtained
3.2. Microstructure and Composition of Obtained Coatings
3.2.1. XRD Analysis
3.2.2. X-Ray Photoelectron Spectroscopy
3.2.3. Raman Spectroscopy
3.3. Hardness Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malini, S.; Raj, K.; Anantharaju, K.S. 1—Role of ceramics and ceramic coatings in biomedical applications. In Advanced Ceramic Coatings for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–13. [Google Scholar] [CrossRef]
- Mhadhbia, M.; Driss, M. Titanium Carbide: Synthesis, Properties and Applications. J. Brilliant Eng. 2021, 2, 1–11. [Google Scholar] [CrossRef]
- Ghidiu, M.; Lukatskaya, M.; Zhao, M.Q.; Gogotsi, Y.; Barsoum, M.W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 2014, 516, 78–81. [Google Scholar] [CrossRef]
- Günen, A.; Soylu, B.; Karakaş, Ö. Titanium carbide coating to improve surface characteristic, wear and corrosion resistance of spheroidal graphite cast irons. Surf. Coat. Technol. 2022, 437, 128280. [Google Scholar] [CrossRef]
- Larhlimi, H.; Ghailane, A.; Makha, M.; Alami, J. Magnetron sputtered titanium carbide-based coatings: A review of science and technology. Vacuum 2022, 197, 110853. [Google Scholar] [CrossRef]
- Janicki, D. The friction and wear behaviour of in-situ titanium carbide reinforced composite layers manufactured on ductile cast iron by laser surface alloying. Surf. Coat. Technol. 2021, 406, 126634. [Google Scholar] [CrossRef]
- Rizzo, A.; Goel, S.; Grilli, M.L.; Iglesias, R.; Jaworska, L.; Lapkovskis, V.; Novak, P.; Postolnyi, B.O.; Valerini, D. The Critical Raw Materials in Cutting Tools for Machining Applications: A Review. Materials 2020, 13, 1377. [Google Scholar] [CrossRef]
- Niknam, S.A.; Kamalizadeh, S.; Asgari, A.; Balazinski, M. Turning titanium metal matrix composites (Ti-MMCs) with carbide and CBN inserts. Int. J. Adv. Manuf. Technol. 2018, 97, 253–265. [Google Scholar] [CrossRef]
- Zhu, M.; Achache, S.; Boulet, P.; Virfeu, A.; Pierson, J.-F.; Sanchette, F. Effects of deposition parameters on the microstructure and mechanical properties of Ti(C,N) produced by moderate temperature chemical vapor deposition (MT-CVD) on cemented carbides. Vacuum 2022, 195, 110650. [Google Scholar] [CrossRef]
- Shafyei, H.; Ashiri, R. Electron beam assisted physical vapor deposition of very hard TiCN coating with nanoscale characters. Ceram. Int. 2019, 45, 14821–14828. [Google Scholar] [CrossRef]
- Radhakrishnan, G.; Adams, P.M.; Speckman, D.M. Low temperature pulsed laser deposition of titanium carbide on bearing steels. Thin Solid Films 2000, 358, 131–138. [Google Scholar] [CrossRef]
- Mohazzab, B.F.; Jaleh, B.; Kakuee, O.; Fattah-alhosseini, A. Formation of titanium carbide on the titanium surface using laser ablation in n-heptane and investigating its corrosion resistance. Appl. Surf. Sci. 2019, 478, 623–635. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, C.; Liu, J.; Chen, Q.; Zhu, X.; Liang, C. Carbon-Encapsulated Metal/Metal Carbide/Metal Oxide Core−Shell Nanostructures Generated by Laser Ablation of Metals in Organic Solvents. ACS Appl. Nano Mater. 2019, 2, 28–39. [Google Scholar] [CrossRef]
- De Bonis, A.; Santagata, A.; Galasso, A.; Laurita, A.; Teghil, R. Formation of Titanium Carbide (TiC) and TiC@C core-shell nanostructures by ultra-short laser ablation of titanium carbide and metallic titanium in liquid. J. Colloid Interface Sci. 2017, 489, 76–84. [Google Scholar] [CrossRef]
- Ali, N.; Bashir, S.; Kalsoom, U.; Begumg, N.; Rafique, M.S.; Husinsky, W. Effect of liquid environment on the titanium surface modification by laser ablation. Appl. Surf. Sci. 2017, 405, 298–307. [Google Scholar] [CrossRef]
- Soni, S.; Phase, D.M.; Gupta, R. Growth and photoemission studies of titanium carbide coating by laser carburizing. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1120, 012029. [Google Scholar] [CrossRef]
- Nikov, R.G.; Nedyalkov, N.N.; Atanasov, P.A.; Karashanova, D.B. Laser-assisted fabrication and size distribution modification of colloidal gold nanostructures by nanosecond laser ablation in different liquids. Appl. Phys. A 2017, 123, 490. [Google Scholar] [CrossRef]
- ISO 6507-1; Metallic Materials—Vickers Hardness Test—Part 1: Test Method. Bulgarian Institute for Standardization: Sofia, Bulgaria, 2024.
- Pan, A.F.; Wang, W.J.; Mei, X.S.; Zheng, B.X.; Yan, Z.X. Cracks growth behaviors of commercial pure titanium under nanosecond laser irradiation for formation of nanostructure-covered microstructures (with sub-5-μm). Appl. Surf. Sci. 2016, 387, 1046–1053. [Google Scholar] [CrossRef]
- Li, M.; Huang, K.; Yi, X. Crack Formation Mechanisms and Control Methods of Laser Cladding Coatings: A Review. Coatings 2023, 13, 1117. [Google Scholar] [CrossRef]
- Allmen, M.V.; Blatter, A. Laser-Beam Interactions with Materials, 2nd ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1995; pp. 57–58. [Google Scholar]
- Long, J.; Eliceiri, M.H.; Wang, L.; Vangelatos, Z.; Ouyang, Y.; Xie, X.; Zhang, Y.; Grigoropoulos, C.P. Capturing the final stage of the collapse of cavitation bubbles generated during nanosecond laser ablation of submerged targets. Opt. Laser Technol. 2021, 134, 106647. [Google Scholar] [CrossRef]
- De Giacomo, A.; Dell’Aglio, M.; Santagata, A.; Gaudiuso, R.; De Pascale, O.; Wagener, P.; Messina, G.C.; Compagnini, G.; Barcikowski, S. Cavitation dynamics of laser ablation of bulk and wire-shaped metals in water during nanoparticles production. Phys. Chem. Chem. Phys. 2013, 15, 3083–3092. [Google Scholar] [CrossRef] [PubMed]
- Fazio, E.; Gökce, B.; De Giacomo, A.; Meneghetti, M.; Compagnini, G.; Tommasini, M.; Waag, F.; Lucotti, A.; Zanchi, C.G.; Ossi, P.M.; et al. Nanoparticles Engineering by Pulsed Laser Ablation in Liquids: Concepts and Applications. Nanomaterials 2020, 10, 2317. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Khatirkar, R.K.; Kumar, A.; Parihar, M.S. Investigations on the effect of heating temperature and cooling rate on evolution of microstructure in an α + β titanium alloy. J. Mater. Res. 2018, 33, 946–957. [Google Scholar] [CrossRef]
- Elshazli, A.M.; Elshaer, R.N.; Hussein, A.H.A.; Al-Sayed, S.R. Laser Surface Modification of TC21 (α/β) Titanium Alloy Using a Direct Energy Deposition (DED) Process. Micromachines 2021, 12, 739. [Google Scholar] [CrossRef]
- Motyka, M.; Nowak, W.J.; Wierzba, B.; Chrominski, W. Characterization of the Interface Between α and β Titanium Alloys in the Diffusion Couple. Metall. Mater. Trans. A 2020, 51, 6584–6591. [Google Scholar] [CrossRef]
- Greczynski, G.; Primetzhofer, D.; Hultman, L. Reference binding energies of transition metal carbides by core-level x-ray photoelectron spectroscopy free from Ar+ etching artefacts. Appl. Surf. Sci. 2018, 436, 102–110. [Google Scholar] [CrossRef]
- Braic, M.; Zoita, N.C.; Danila, M.; Grigorescu, C.E.A.; Logofatu, C. Hetero-epitaxial growth of TiC films on MgO(001) at 100 °C by DC reactive magnetron sputtering. Thin Solid Films 2015, 589, 590–596. [Google Scholar] [CrossRef]
- Lohse, B.H.; Calka, A.; Wexler, D. Raman spectroscopy as a tool to study TiC formation during controlled ball milling. J. Appl. Phys. 2005, 97, 114912. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikov, R.; Nedyalkov, N.; Valkov, S.; Koutzarova, T.; Aleksandrov, L.; Atanasova, G.; Grochowska, K. Nanosecond Laser Processing of Titanium in Organic Liquids as a Method for Obtaining Titanium Carbide Coatings. Materials 2025, 18, 598. https://doi.org/10.3390/ma18030598
Nikov R, Nedyalkov N, Valkov S, Koutzarova T, Aleksandrov L, Atanasova G, Grochowska K. Nanosecond Laser Processing of Titanium in Organic Liquids as a Method for Obtaining Titanium Carbide Coatings. Materials. 2025; 18(3):598. https://doi.org/10.3390/ma18030598
Chicago/Turabian StyleNikov, Rosen, Nikolay Nedyalkov, Stefan Valkov, Tatyana Koutzarova, Lyubomir Aleksandrov, Genoveva Atanasova, and Katarzyna Grochowska. 2025. "Nanosecond Laser Processing of Titanium in Organic Liquids as a Method for Obtaining Titanium Carbide Coatings" Materials 18, no. 3: 598. https://doi.org/10.3390/ma18030598
APA StyleNikov, R., Nedyalkov, N., Valkov, S., Koutzarova, T., Aleksandrov, L., Atanasova, G., & Grochowska, K. (2025). Nanosecond Laser Processing of Titanium in Organic Liquids as a Method for Obtaining Titanium Carbide Coatings. Materials, 18(3), 598. https://doi.org/10.3390/ma18030598