Design of Tool Shape and Evaluation of Deformation Behavior by Digital Image Correlation Method in V-Bending of Sheet Metal Using Plastic Tools Manufactured by 3D Printer
Abstract
:1. Introduction
2. Plastic Tool Shape and Bending Conditions
2.1. Metallic Sheet Materials and Plastic Material
2.2. Tool Shape Design Method and Bending Conditions
- (1)
- The bending angle is 90°.
- (2)
- The radius of the bending corner is generally three times the sheet thickness t (mm) over the minimum bending radius at least. Thus, the punch corner radius is 3 mm.
- (3)
- To meet the plane strain state conditions in bending, 30 mm in width b (mm) of the sheet is selected, which is 30 times the sheet thickness t (mm).
- (4)
- The punch and die widths are the same as the sheet width b (mm), and the punch length is the same as the span W (mm) in bending.
2.3. Evaluation of Deformation Behavior Using Digital Image Correlation Method
3. Bending Results
3.1. Deformation Behaviors of Tools and Sheet in V-Bending
3.2. Bend Angle of Sheets
3.3. Strain Distributions of Tools
4. Discussion
4.1. Bending Force
4.2. Bend Angle and Springback Angle of Sheets
5. Conclusions
- (1)
- The large compressive strain occurred around the center of the punch tip and the inclined angles of the die during general bending, whereas bending with bottoming resulted in the compressive strain concentrated on the bottom center. The ability of the DIC method to capture the strain distribution in both general bending and bottoming conditions was effectively demonstrated.
- (2)
- The experimental maximum bending force closely matched the theoretical free bending force under non-bottoming conditions, thereby validating the accuracy of the empirical model in such cases. However, in bottoming, the experimental forces exceeded the predicted values due to additional constraints and localized stress concentrations.
- (3)
- Increasing the span of the tools reduced the bending force under conditions without bottoming and minimized the elastic deformation of the punch and die. This reduction in tool deformation allowed the bent sheet angle at the bottom dead center to align closely with the designed tool angle.
- (4)
- The springback angle increased with the tensile strength of the sheet. Modifying the tool angle based on the estimated springback angle becomes a feasible method for achieving the desired product angles, particularly in 3D-printed plastic tools.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gibson, I.; Rosen, D.; Stucker, B. Additive Manufacturing Technologies; Springer: New York, NY, USA, 2015. [Google Scholar]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Levy, G.N.; Schindel, R.; Kruth, J.P. Rapid manufacturing and rapid tooling with Layer Manufacturing (LM) Technologies, state of the art and future perspectives. CIRP Ann. 2003, 52, 589–609. [Google Scholar] [CrossRef]
- Rosochowski, A.; Matuszak, A. Rapid tooling: The state of the art. J. Mater. Process. Technol. 2000, 106, 191–198. [Google Scholar] [CrossRef]
- Zenou, M.; Grainger, L. Additive manufacturing of metallic materials. Addit. Manuf. 2018, 53–103. [Google Scholar] [CrossRef]
- Nyamuchiwa, K.; Palad, R.; Panlican, J.; Tian, Y.; Aranas, C. Recent progress in hybrid additive manufacturing of metallic materials. Appl. Sci. 2023, 13, 8383. [Google Scholar] [CrossRef]
- Armillotta, A.; Baraggi, R.; Fasoli, S. SLM tooling for die casting with conformal cooling channels. Int. J. Adv. Manuf. Technol. 2014, 71, 573–583. [Google Scholar] [CrossRef]
- Mazur, M.; Brincat, P.; Leary, M.; Brandt, M. Numerical and experimental evaluation of a conformally cooled H13 steel injection mould manufactured with selective laser melting. Int. J. Adv. Manuf. Technol. 2017, 93, 881–900. [Google Scholar] [CrossRef]
- Tan, C.; Wang, D.; Ma, W.; Chen, Y.; Chen, S.; Yang, Y.; Zhou, K. Design and additive manufacturing of novel conformal cooling molds. Mater. Des. 2020, 196, 109147. [Google Scholar] [CrossRef]
- Huzaim, N.H.M.; Rahim, S.Z.A.; Musa, L.; Abdellah, A.E.-h.; Abdullah, M.M.A.B.; Rennie, A.; Rahman, R.; Garus, S.; Błoch, K.; Sandu, A.V.; et al. Potential of rapid tooling in rapid heat cycle molding: A review. Materials 2022, 15, 3725. [Google Scholar] [CrossRef] [PubMed]
- Asnafi, N.; Rajalampi, J.; Aspenberg, D. Design and validation of 3D-printed tools for stamping of DP600. IOP Conf. Ser. Mater. Sci. Eng. 2019, 651, 012010. [Google Scholar] [CrossRef]
- Asnafi, N.; Rajalampi, J.; Aspenberg, D.; Alveflo, A. Production tools made by additive manufacturing through laser-based powder bed fusion. Berg Huettenmaenn. Monatsh. 2020, 165, 125–136. [Google Scholar] [CrossRef]
- Pujante, J.; González, B.; Garcia-Llamas, E. Pilot demonstration of hot sheet metal forming using 3D printed dies. Materials 2021, 14, 5695. [Google Scholar] [CrossRef] [PubMed]
- Hölker, R.; Haase, M.; Khalifa, N.B.; Tekkaya, A.E. Hot extrusion dies with conformal cooling channels produced by additive manufacturing. Mater. Today 2015, 2, 4838–4846. [Google Scholar] [CrossRef]
- Haeberle, G.; Desai, S. Investigating rapid thermoform tooling via additive manufacturing (3D printing). Am. J. Appl. Sci. 2019, 16, 238–243. [Google Scholar] [CrossRef]
- Rahmati, S. Direct rapid tooling. Compr. Mater. Process. 2014, 10, 303–344. [Google Scholar] [CrossRef]
- Vella, A.; Rochman, A.; Vella, P. Rapid tooling development for low volume injection molding of cosmetic compacts. Mater. Res. Proc. 2023, 28, 207–216. [Google Scholar] [CrossRef]
- Tondini, F.; Arinbjarnar, U.; Basso, A.; Nielsen, C.V. 3D printing to facilitate flexible sheet metal forming production. Procedia CIRP 2021, 103, 91–96. [Google Scholar] [CrossRef]
- Tondini, F.; Basso, A.; Arinbjarnar, U.; Nielsen, C.V. The performance of 3D printed polymer tools in sheet metal forming. Metals 2021, 11, 1256. [Google Scholar] [CrossRef]
- Durgun, I. Sheet metal forming using FDM rapid prototype tool. Rapid Prototyp. J. 2015, 21, 412–422. [Google Scholar] [CrossRef]
- Aksenov, L.B.; Kononov, I.Y. 3D printed plastic tool for Al thin-sheet forming. IOP Conf. Ser. Earth Environ. Sci. 2019, 337, 012053. [Google Scholar] [CrossRef]
- Zaragoza, V.G.; Rane, K.; Strano, M.; Monno, M. Manufacturing and performance of 3D printed plastic tools for air bending applications. J. Manuf. Process. 2021, 66, 460–469. [Google Scholar] [CrossRef]
- Rajendran, P.; Ganesan, A. Numerical and experimental investigation of direct rapid tooling for sheet metal forming using selective laser sintering. J. Manuf. Process. 2024, 120, 555–567. [Google Scholar] [CrossRef]
- Schuh, G.; Bergweiler, G.; Fiedler, F.; Bickendorf, P.; Schumacher, P. Small series production and geometric analysis of sheet metal car body parts using forming tools made of fused filament fabricated PLA. In Proceedings of the 2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, 14–17 December 2020; pp. 156–160. [Google Scholar] [CrossRef]
- Grigoraș, C.; Chiriță, B.; Brabie, G. Additive manufacturing of a stretch forming die using 3D printing technology. IOP Conf. Ser. Mater. Sci. Eng. 2019, 564, 012017. [Google Scholar] [CrossRef]
- Leacock, A.; Volk, G.; McCracken, D.; Brown, D. The use of fused deposition modelled tooling in low volume production of stretch formed double curvature components. Procedia Eng. 2017, 183, 343–350. [Google Scholar] [CrossRef]
- Giolu, C.; Pupăză, C.; Amza, C.G. Exploring polymer-based additive manufacturing for cost-effective stamping devices: A feasibility study with finite element analysis. Polymers 2024, 16, 1894. [Google Scholar] [CrossRef] [PubMed]
- Frohn-Sörensen, P.; Geueke, M.; Tuli, T.B.; Kuhnhen, C.; Manns, M.; Engel, B. 3D printed prototyping tools for flexible sheet metal drawing. Int. J. Adv. Manuf. Technol. 2021, 115, 2623–2637. [Google Scholar] [CrossRef]
- Athale, M.; Park, T.; Hahnlen, R.; Pourboghrat, F. Design, performance, and cost savings of using GF-PC additively manufactured tooling for stamping of HSS 590 sheet metal. J. Manuf. Process. 2023, 101, 1–14. [Google Scholar] [CrossRef]
- Hopkinson, N.; Hague, R.J.M.; Dickens, P.M. (Eds.) Rapid Manufacturing: An Industrial Revolution for the Digital Age; John Wiley & Sons, Ltd.: Chichester, UK, 2005. [Google Scholar]
- Frohn-Sörensen, P.; Geueke, M.; Engel, B.; Löffler, B.; Bickendorf, P.; Asimi, A.; Bergweiler, G.; Schuh, G. Design for 3D printed tools: Mechanical material properties for direct polymer additive tooling. Polymers 2022, 14, 1694. [Google Scholar] [CrossRef]
- Geueke, M.; Frohn-Sörensen, P.; Reuter, J.; Padavu, N.; Reinicke, T.; Engel, B. Structural optimization of additively manufactured polymer tools for flexible sheet metal forming. Procedia CIRP 2021, 104, 1345–1350. [Google Scholar] [CrossRef]
- Nakamura, N.; Mori, K.; Abe, F.; Abe, Y. Bending of sheet metals using plastic tools made with 3D printer. Procedia Manuf. 2018, 15, 737–742. [Google Scholar] [CrossRef]
- Nakamura, N.; Mori, K.; Abe, Y. Applicability of plastic tools additively manufactured by fused deposition modelling for sheet metal forming. Int. J. Adv. Manuf. Technol. 2020, 108, 975–985. [Google Scholar] [CrossRef]
- Zaragoza, V.G.; Strano, M.; Iorio, L.; Monno, M. Sheet metal bending with flexible tools. Procedia Manuf. 2019, 29, 232–239. [Google Scholar] [CrossRef]
- Holzer, K.; Maier, L.; Böhm, V.; Volk, W. Dimensional precision and wear of a new approach for prototype tooling in deep drawing. IOP Conf. Ser. Mater. Sci. Eng. 2023, 1284, 012078. [Google Scholar] [CrossRef]
- Athale, M.; Park, T.; Hahnlen, R.; Pourboghrat, F. Experimental characterization and finite element simulation of FDM 3D printed polymer composite tooling for sheet metal stamping. Int. J. Adv. Manuf. Technol. 2022, 121, 6973–6989. [Google Scholar] [CrossRef]
- Sutton, M.A.; Orteu, J.-J.; Schreier, H.W. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications; Springer: New York, NY, USA, 2009. [Google Scholar]
- Pan, B.; Qian, K.; Xie, H.; Asundi, A. Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review. Meas. Sci. Technol. 2009, 20, 062001. [Google Scholar] [CrossRef]
- JIS Z 2241:2022; Metallic Materials—Tensile Testing—Method of Test at Room Temperature. Japanese Standards Association: Tokyo, Japan, 2022.
- Eary, D.F.; Reed, E.A. Techniques of Pressworking Sheet Metal: An Engineering Approach to Die Design; Prentice Hall: Hoboken, NJ, USA, 1958; p. 56. [Google Scholar]
- Lange, K. Handbook of Metal Forming; McGraw-Hill, Inc.: New York, NY, USA, 1985; p. 23. [Google Scholar]
- Mori, K.; Akita, K.; Abe, Y. Springback behaviour in bending of ultra-high-strength steel sheets using CNC servo press. Int. J. Mach. Tools Manuf. 2007, 47, 321–325. [Google Scholar] [CrossRef]
- Marciniak, Z.; Duncan, J.L.; Hu, S.J. Mechanics of Sheet Metal Forming; Butterworth-Heinemann: Oxford, UK, 2002; pp. 93–94. [Google Scholar]
- Yoshida, F.; Amaishi, T. Model for description of nonlinear unloading-reloading stress-strain response with special reference to plastic-strain dependent chord modulus. Int. J. Plast. 2020, 130, 102708. [Google Scholar] [CrossRef]
Sheet | Thickness t [mm] | Tensile Strength [MPa] | Proof Stress [MPa] | Elongation [%] | F-Value F [MPa] | n-Value n |
---|---|---|---|---|---|---|
A1100-H | 0.96 | 140 | 130 | 4.8 | 160 | 0.042 |
440 MPa steel | 1.01 | 470 | 300 | 30 | 800 | 0.20 |
590 MPa steel | 1.03 | 630 | 470 | 24 | 1060 | 0.19 |
980 MPa steel | 1.00 | 1000 | 680 | 15 | 1430 | 0.11 |
Nozzle Diameter [mm] | Temperature [°C] | Layer Thickness [mm] | Number | Infill [%] | ||
---|---|---|---|---|---|---|
Nozzle | Platform | Top and Bottom Layers | Outlines | |||
0.4 | 200 | 50 | 0.18 | 3 | 2 | 80 |
Sheet | Span W = 12 mm | Span W = 24 mm | ||||
---|---|---|---|---|---|---|
Maximum Free Bending Force Pe [N] | Mean Punch Pressure σp [MPa] | σy/σp | Maximum Free Bending Force Pe [N] | Mean Punch Pressure σp [MPa] | σy/σp | |
A1100-H | 429 | 1.19 | 46.2 | 215 | 0.299 | 184 |
440 MPa steel | 1590 | 4.42 | 12.4 | 797 | 1.11 | 49.5 |
590 MPa steel | 2220 | 6.17 | 8.91 | 1110 | 1.54 | 35.7 |
980 MPa steel | 3330 | 9.25 | 5.95 | 1660 | 2.31 | 23.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakamura, N.; Hata, Y.; Daodon, W.; Ikeda, D.; Adachi, N.; Todaka, Y.; Abe, Y. Design of Tool Shape and Evaluation of Deformation Behavior by Digital Image Correlation Method in V-Bending of Sheet Metal Using Plastic Tools Manufactured by 3D Printer. Materials 2025, 18, 608. https://doi.org/10.3390/ma18030608
Nakamura N, Hata Y, Daodon W, Ikeda D, Adachi N, Todaka Y, Abe Y. Design of Tool Shape and Evaluation of Deformation Behavior by Digital Image Correlation Method in V-Bending of Sheet Metal Using Plastic Tools Manufactured by 3D Printer. Materials. 2025; 18(3):608. https://doi.org/10.3390/ma18030608
Chicago/Turabian StyleNakamura, Naotaka, Yuri Hata, Witthaya Daodon, Daiki Ikeda, Nozomu Adachi, Yoshikazu Todaka, and Yohei Abe. 2025. "Design of Tool Shape and Evaluation of Deformation Behavior by Digital Image Correlation Method in V-Bending of Sheet Metal Using Plastic Tools Manufactured by 3D Printer" Materials 18, no. 3: 608. https://doi.org/10.3390/ma18030608
APA StyleNakamura, N., Hata, Y., Daodon, W., Ikeda, D., Adachi, N., Todaka, Y., & Abe, Y. (2025). Design of Tool Shape and Evaluation of Deformation Behavior by Digital Image Correlation Method in V-Bending of Sheet Metal Using Plastic Tools Manufactured by 3D Printer. Materials, 18(3), 608. https://doi.org/10.3390/ma18030608