The Influence of Hot Isostatic Pressing on the Mechanical Properties of Ti-6Al-4V Samples Printed Using the LENS Method
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Results for Samples Not Subjected to the HIP Process
3.2. Results for Samples After the HIP Process
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tranquillo, J.; Goldberg, J.; Allen, R. Chapter 7—Prototyping, Biomedical Engineering Design Biomedical Engineering; Academic Press: Cambridge, MA, USA, 2023; pp. 197–234. [Google Scholar] [CrossRef]
- Gupta, S.; Bit, A. 16-Rapid prototyping for polymeric gels. In Polymeric Gels Characterization, Properties and Biomedical Applications A volume in Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Sawston, UK, 2018; pp. 397–439. [Google Scholar] [CrossRef]
- Chang, K.-H. Introduction to e-Design, Product Performance Evaluation with CAD/CAE; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Atkinson, H.V.; Davies, S. Fundamental aspects of hot isostatic pressing: An overview. Metall. Mater Trans. A. 2000, 31, 2981–3000. [Google Scholar] [CrossRef]
- Vrancken, B.; Thijs, L.; Kruth, J.P.; van Humbeeck, J. Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties. J. Alloys Compd. 2012, 541, 177–185. [Google Scholar] [CrossRef]
- Plessis, A.; Macdonald, E. Hot isostatic pressing in metal additive manufacturing: X-ray tomography reveals details of pore closure. Addit. Manuf. 2020, 34, 101191. [Google Scholar] [CrossRef]
- Leuders, S.; Tröster, T.; Riemer, A.; Richard, H.A.; Niendorf, T. On the mechanical performance of structures manufactured by selective laser melting: Damage initiation and propagation, Presented at the Additive Manufacturing with Powder Metallurgy Conference. In Proceedings of the AMPM2014 Conference Presentations, Orlando, FL, USA, 18–20 May 2014. [Google Scholar]
- Peter, W.; Nandwana, P.; Kirka, M.; Dehoff, R.; Sames, W.; Erdmann, D.; Eklund, A.; Howard, R. Understanding the Role of Hot Isostatic Pressing Parameters on the Microstructural Evolution of Ti-6Al-4V and Inconel 718 Fabricated by Electron Beam Melting. In Report No. ORNL/TM-2015/77; CRADA/NFE-14-04943; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 2015. [Google Scholar] [CrossRef]
- Wennerberg, A.; Albrektsson, T. Effects of titanium surface topography on bone integration: A systematic review. Clin. Oral Implants Res. 2009, 20, 172–184. [Google Scholar] [CrossRef]
- Klokkevold, P.; Naishimura, R.; Adachi, M.; Caputo, A. Osteointegration enhanced by chemical eatching of the titanium surface. A torque removal study in the Rabbit. Clin. Oral Implants Res. 1997, 8, 442–447. [Google Scholar] [CrossRef]
- Lv, Z.; Li, H.; Che, L.; Chen, S.; Zhang, P.; He, J.; Wu, Z.; Niu, S.; Li, X. Effects of HIP Process Parameters on Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated by SLM. Metals 2023, 13, 991. [Google Scholar] [CrossRef]
- Ramsden, J.; Allen, D.M.; Sephenson, D.; Alcock, J.; Peggs, G.N.; Fuller, G.D.; Goch, G. The design and manufacture of biomedical surfaces. CIRP Ann. 2007, 56, 687–711. [Google Scholar] [CrossRef]
- Götz, H.E.; Müller, M.; Emmel, A.; Holzwarth, U.; Erben, R.G.; Stangl, R. Effect of surface finish on the osseointegration of laser-treated titanium alloy implants. Biomaterials 2004, 25, 4057–4064. [Google Scholar] [CrossRef] [PubMed]
- Roy, M.; Balla, V.K.; Bandyopadhyay, A.; Bose, S. Compositionally graded hydroxyapatite/tricalcium phosphate coating on Ti by laser and induction plasma. Acta Biomater. 2011, 7, 866–873. [Google Scholar] [CrossRef]
- Frazier, W.E. Metal Additive Manufacturing: A Review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar] [CrossRef]
- Camacho, D.D.; Clayton, P.; O’Brien, W.; Ferron, R.; Juenger, M.; Salamone, S.; Seepersad, C. Applications of additive manufacturing in the construction industry—A prospective review, ISARC. In Proceedings of the International Symposium on Automation and Robotics in Construction, Taipei, Taiwan, 28 June–1 July 2017; Vilnius Gediminas Technical University, Department of Construction Economics & Property: Vilnius, Lithuania, 2017; Volume 34. [Google Scholar]
- Dutta, B.; Froes, F.H. The Additive Manufacturing (AM) of titanium alloys. Met. Powder Rep. 2017, 72, 96–106. [Google Scholar] [CrossRef]
- Zhou, Y.; Zeng, W.; Sun, Y.; Zhang, Y. A numerical insight into stress mode shapes of rectangular thin-plate structures. Mech Based Des Struc. 2023, 51, 2655–2680. [Google Scholar] [CrossRef]
- Lario, J.; Vicente, Á.; Amigó, V. Evolution of the Microstructure and Mechanical Properties of a Ti35Nb2Sn Alloy Post-Processed by Hot Isostatic Pressing for Biomedical Applications. Metals 2021, 11, 1027. [Google Scholar] [CrossRef]
- Hijazi, K.M.; Dixon, S.J.; Armstrong, J.E.; Rizkalla, A.S. Titanium Alloy Implants with Lattice Structures for Mandibular Reconstruction. Materials 2024, 17, 140. [Google Scholar] [CrossRef] [PubMed]
- Elfghi, M.A.; Gunay, M. Mechanical Properties of Powder Metallurgy (Ti-6Al-4V) with Hot Isostatic Pressing. Eng. Technol. Appl. Sci. Res. 2020, 10, 5637–5642. [Google Scholar] [CrossRef]
- Chao, C.; Xiangyun, G.; Qing, T.; Raj, K.; Jie, L.; Qingsong, W.; Yusheng, S. Hot isostatic pressing of a near α-Ti alloy: Temperature optimization, microstructural evolution and mechanical performance evaluation. Mater. Sci. Eng. A. 2021, 802, 14026. [Google Scholar] [CrossRef]
- Petrovskiy, P.; Sova, A.; Doubenskaia, M.; Smurov, I. Influence of hot isostatic pressing on structure and properties of titanium cold-spray deposits. Int. J. Adv. Manuf. Technol. 2019, 102, 819–827. [Google Scholar] [CrossRef]
- Guo, R.P.; Xu, L.; Lei, J.F.; Yang, R. Effects of Porosity and Re-HIP on Properties of Ti-6Al-4V Alloy from Atomized Powder. In Applied Mechanics and Materials; Trans Tech Publications, Ltd.: Bäch, Switzerland, 2014; Volume 552, pp. 274–277. [Google Scholar] [CrossRef]
- Adelmann, B.; Hellmann, R. Mechanical Properties of LPBF-Built Titanium Lattice Structures—A Comparative Study of As-Built and Hot Isostatic Pressed Structures for Medical Implants. Metals 2022, 12, 2072. [Google Scholar] [CrossRef]
- Iwaya, Y.; Machigashira, M.; Kanbara, K.; Miyamoto, M.; Noguchi, K.; Izumi, Y.; Ban, S. Surface properties and biocompatibility of acid-etched titanium. Dent. Mater. J. 2008, 27, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Mei, J.; Wain, N.; Wu, X. Effect of hot-isostatic-pressing parameters on the microstructure and properties of powder Ti-6Al-4V hot-isostatically-pressed samples. Met. Mater. Trans. A. 2010, 41, 1033–1045. [Google Scholar] [CrossRef]
- Xu, L.; Guo, R.; Bai, C.; Lei, J.; Yang, R. Effect of hot isostatic pressing conditions and cooling rate on microstructure and properties of Ti–6Al–4V alloy from atomized powder. J. Mater. Sci. Technol. 2014, 30, 1289–1295. [Google Scholar] [CrossRef]
- Cai, C.; Song, B.; Qiu, C.; Li, L.; Xue, P.; Wei, Q.; Zhou, J.; Nan, H.; Chen, H.; Shi, Y. Hot isostatic pressing of in-situ TiB/Ti-6Al-4V composites with novel reinforcement architecture, enhanced hardness and elevated tribological properties. J. Alloys Compd. 2017, 710, 364–374. [Google Scholar] [CrossRef]
- Szafrańska, A.; Antolak-Dudka, A.; Baranowski, P.; Bogusz, P.; Zasada, D.; Małachowski, J.; Czujko, T. Identification of Mechanical Properties for Titanium Alloy Ti-6Al-4V Produced Using LENS Technology. Materials 2019, 12, 886. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.; Jacobs, T.; Boyan, B.; Schwartz, Z. Hot isostatic pressure treatment of 3D printed Ti6Al4V alters surface modifications and cellular response. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019, 108, 1262–1273. [Google Scholar] [CrossRef] [PubMed]
- Antolak-Dudka, A.; Czujko, T.; Durejko, T.; Stępniowski, W.J.; Ziętala, M.; Łukasiewicz, J. Comparison of the Microstructural, Mechanical and Corrosion Resistance Properties of Ti6Al4V Samples Manufactured by LENS and Subjected to Various Heat Treatments. Materials 2024, 17, 1166. [Google Scholar] [CrossRef] [PubMed]
Ti | Al | V | Fe | C | N | H | Olimit | Otypical | |
---|---|---|---|---|---|---|---|---|---|
Grade 5 | Bal. | 5.5–6.75 | 3.5–4.5 | ≤0.40 | ≤0.08 | ≤0.05 | ≤0.015 | ≤0.20 | 0.11 |
Sample Number | Temperature [°C] | Pressure [Bar] | Time [min] |
---|---|---|---|
X1.1 ÷ X1.4 | 1150 | 500 | 240 |
Y1.1 ÷ Y1.3 | |||
X2.1 ÷ X2.4 | 1000 | ||
Y2.1 ÷ Y2.4 | |||
X3.1 ÷ X3.2 | 1500 | ||
Y3.1 ÷ Y3.3 |
Sample Number | Peak Load [kN] | Ultimate Tensile Stress [MPa] | Young’s Modulus [GPa] | Strain at Break [mm/mm] | Poisson’s Ratio |
---|---|---|---|---|---|
X1 | 18.94 | 946.93 | - | 0.027 | - |
X2 | 19 | 950.36 | 116.6 | 0.027 | 0.3 |
X3 | 18.9 | 945.26 | 114.3 | 0.025 | 0.4 |
X4 | 18.87 | 943.47 | 114 | 0.029 | 0.4 |
X5 | 18.97 | 948.64 | 113.9 | 0.031 | 0.3 |
X6 | 18.07 | 903.51 | 117.3 | 0.027 | 0.3 |
Average X | 18.79 ± 0.36 | 939.70 ± 17.89 | 115.2 ± 1.6 | 0.028 ± 0.02 | 0.34 ± 0.05 |
Y1 | 18.52 | 925.75 | 113.8 | 0.024 | 0.3 |
Y2 | 18.58 | 928.81 | 113.2 | 0.027 | 0.4 |
Y3 | 18.63 | 931.34 | 114.3 | 0.030 | 0.5 |
Y4 | 18.56 | 928.11 | 113.8 | 0.032 | 0.3 |
Y5 | 18.64 | 932.13 | 117.6 | 0.027 | 0.3 |
Y6 | 18.383 | 919.16 | 119.9 | 0.03 | 0.4 |
Average Y | 18.55 ± 0.09 | 927.55 ± 4.71 | 115.4 ± 2.7 | 0.028 ± 0.03 | 0.37 ± 0.09 |
Sample Number | Peak Load [kN] | Ultimate Tensile Stress [MPa] | Young’s Modulus [GPa] | Strain at Break [mm/mm] | Poisson’s Ratio |
---|---|---|---|---|---|
X1.1 | 10.43 | 501.04 | 113.58 | 0.07 | 0.35 |
X1.2 | 15.78 | 765.04 | 110.5 | 0.1 | 0.31 |
X1.3 | 13.91 | 669.74 | 120.03 | 0.05 | 0.30 |
X1.4 | 12.79 | 622.12 | 113.17 | 0.04 | 0.25 |
Average (X1.1–X1.4) | 13.23 ± 2.24 | 639.48 ± 109.77 | 114.32 ± 4.04 | 0.07 ± 0.03 | 0.32 ± 0.03 |
X2.1 | 15.93 | 776.87 | 119.35 | 0.06 | 0.33 |
X2.2 | 17.57 | 831.51 | 117.24 | 0.06 | 0.41 |
X2.3 | 17.36 | 831.15 | 117.53 | 0.06 | 0.32 |
X2.4 | 17.42 | 837.29 | 122.14 | 0.06 | 0.28 |
Average (X2.1–X2.4) | 17.07 ± 0.77 | 819.21 ± 28.36 | 119.07 ± 2.25 | 0.06 ± 0 | 0.34 ± 0.05 |
X3.1 | 18.187 | 887.94 | 113.88 | 0.07 | 0.37 |
X3.2 | 19.156 | 916.12 | 117.01 | 0.08 | 0.42 |
Average (X3.1–X3.2) | 18.67 ± 0.69 | 902.03 ± 19.93 | 115.45 ± 2.21 | 0.08 ± 0.01 | 0.4 ± 0.04 |
Average X | 16.32 ± 2.80 | 786.91 ± 134.22 | 116.28 ± 2.48 | 0.07 ± 0.01 | 0.35 ± 0.04 |
Y1.1 | 14.48 | 695.98 | 126 | 0.06 | 0.29 |
Y1.2 | 13.39 | 651.91 | 102.9 | 0.06 | 0.36 |
Y1.3 | 15.19 | 727.97 | 113.67 | 0.06 | 0.42 |
Average (Y1.1–Y1.3) | 14.35 ± 0.91 | 691.95 ± 38.19 | 114.19 ± 11.56 | 0.06 | 0.36 ± 0.07 |
Y2.1 | 18.02 | 866.15 | 115.97 | 0.07 | 0.32 |
Y2.2 | 18.2 | 868.53 | 121.99 | 0.08 | 0.34 |
Y2.3 | 17.94 | 860.62 | 111.12 | 0.07 | 0.33 |
Y2.4 | 18.98 | 898.72 | 112.52 | 0.1 | 0.34 |
Average (Y2.1–Y2.4) | 18.28 ± 0.47 | 873.50 ± 17.13 | 115.4 ± 4.84 | 0.08 ± 0.01 | 0.33 ± 0.01 |
Y3.1 | 18.53 | 897.71 | 131.34 | 0.07 | 0.43 |
Y3.2 | 18.66 | 896.56 | 105.84 | 0.07 | 0.29 |
Y3.3 | 18.37 | 890.67 | 108.5 | 0.07 | 0.28 |
Average (Y3.1–Y3.3) | 18.52 ± 0.14 | 894.98 ± 3.78 | 115.23 ± 14.02 | 0.07 | 0.33 ± 0.08 |
Average Y | 17.05 ± 2.34 | 820.14 ± 111.54 | 114.94 ± 0.66 | 0.07 ± 0.01 | 0.34 ± 0.01 |
Samples After the HIP Process | Rp0.2 [MPa] | Rp [MPa] |
---|---|---|
(X1.1–X1.4) | 123.68 ± 0.91 | 119.33 ± 3.1 |
(X2.1–X2.4) | 122.76 ±1.57 | 120.65 ± 5.44 |
(X3.1–X3.2) | 123.53 ± 1.8 | 122.31 ± 0.2 |
Average X | 123.32 ± 0.49 | 120.76 ± 1.49 |
(Y1.1–Y1.3) | 123.71 ± 0.49 | 122.82 ± 1.49 |
(Y2.1–Y2.4) | - | - |
(Y3.1–Y3.3) | 122.79 ± 0.35 | 121.45 ± 1.32 |
Average Y | 123.25 ± 0.65 | 122.14 ± 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gzik-Zroska, B.; Joszko, K.; Piątek, A.; Wolański, W.; Kawlewska, E.; Szarek, A.; Kajzer, W.; Stradomski, G. The Influence of Hot Isostatic Pressing on the Mechanical Properties of Ti-6Al-4V Samples Printed Using the LENS Method. Materials 2025, 18, 612. https://doi.org/10.3390/ma18030612
Gzik-Zroska B, Joszko K, Piątek A, Wolański W, Kawlewska E, Szarek A, Kajzer W, Stradomski G. The Influence of Hot Isostatic Pressing on the Mechanical Properties of Ti-6Al-4V Samples Printed Using the LENS Method. Materials. 2025; 18(3):612. https://doi.org/10.3390/ma18030612
Chicago/Turabian StyleGzik-Zroska, Bożena, Kamil Joszko, Agata Piątek, Wojciech Wolański, Edyta Kawlewska, Arkadiusz Szarek, Wojciech Kajzer, and Grzegorz Stradomski. 2025. "The Influence of Hot Isostatic Pressing on the Mechanical Properties of Ti-6Al-4V Samples Printed Using the LENS Method" Materials 18, no. 3: 612. https://doi.org/10.3390/ma18030612
APA StyleGzik-Zroska, B., Joszko, K., Piątek, A., Wolański, W., Kawlewska, E., Szarek, A., Kajzer, W., & Stradomski, G. (2025). The Influence of Hot Isostatic Pressing on the Mechanical Properties of Ti-6Al-4V Samples Printed Using the LENS Method. Materials, 18(3), 612. https://doi.org/10.3390/ma18030612