Development of Bio-Composites from Milkweed Fibers Using Air-Laid Spike Process for Automobile Dashboard Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Bio-Composite Preparation
2.3. Characterization of the Samples
2.3.1. Physical Properties
2.3.2. Microstructure Analysis of Fibers and Bio-Composites
2.3.3. Thermogravimetric Analysis (TGA)
2.3.4. Thermal Conductivity
2.3.5. Sound Transmission Loss (STL)
2.3.6. Tensile Tests
2.3.7. Flexural Tests
2.3.8. Dynamic Mechanical Analysis (DMA)
2.3.9. Contact Angle
3. Results and Discussion
3.1. Microstructural Analysis
3.2. Thermogravimetric Analysis (TGA)
3.3. Thermal Conductivity
3.4. Sound Transmission Loss (STL)
3.5. Tensile and Flexural Properties
3.6. Dynamic Mechanical Analysis
3.7. Contact Angle
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naik, V.; Kumar, M.; Kaup, V. A Review on Natural Fiber Composite Material in Automotive Applications. Eng. Sci. 2021, 18, 1–10. [Google Scholar] [CrossRef]
- Holbery, J.; Houston, D. Natural-fiber-reinforced polymer composites in automotive applications. JOM 2006, 58, 80–86. [Google Scholar] [CrossRef]
- Ahmad, F.; Choi, H.S.; Park, M.K. A Review: Natural Fiber Composites Selection in View of Mechanical, Light Weight, and Economic Properties. Macromol. Mater. Eng. 2015, 300, 10–24. [Google Scholar] [CrossRef]
- Mvubu, M.; Patnaik, A.; Anandjiwala, R.D. Process Parameters Optimization of Needle-punched Nonwovens for Sound Absorption Application. J. Eng. Fibers Fabr. 2015, 10, 155892501501000. [Google Scholar] [CrossRef]
- Choudhary, S.; Haloi, J.; Kumar Sain, M.; Saraswat, P.; Kumar, V. Systematic literature review on thermal and acoustic characteristics of natural fibre polymer composites for automobile applications. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Agarwal, J.; Sahoo, S.; Mohanty, S.; Nayak, S.K. Progress of novel techniques for lightweight automobile applications through innovative eco-friendly composite materials: A review. J. Thermoplast. Compos. Mater. 2020, 33, 978–1013. [Google Scholar] [CrossRef]
- Khan, F.; Hossain, N.; Mim, J.J.; Rahman, S.M.; Iqbal, M.J.; Billah, M.; Chowdhury, M.A. Advances of composite materials in automobile applications—A review. J. Eng. Res. 2024, in press. [Google Scholar] [CrossRef]
- Ali, A.; Shaker, K.; Nawab, Y.; Jabbar, M.; Hussain, T.; Militky, J.; Baheti, V. Hydrophobic treatment of natural fibers and their composites—A review. J. Ind. Text. 2018, 47, 2153–2183. [Google Scholar] [CrossRef]
- Diyana, Z.N.; Jumaidin, R.; Selamat, M.Z.; Ghazali, I.; Julmohammad, N.; Huda, N.; Ilyas, R.A. Physical Properties of Thermoplastic Starch Derived from Natural Resources and Its Blends: A Review. Polymers 2021, 13, 1396. [Google Scholar] [CrossRef]
- Penu, C.; Helou, M. Acide polylactique (PLA). In Matériaux|Matériaux Fonctionnels—Matériaux Biosourcés; Techniques de l’ingénieur, Ed.; Techniques de l’ingénieur: Paris, France, 2017; Réf AM3317 V1. [Google Scholar]
- Vink, E.T.H.; Rábago, K.R.; Glassner, D.A.; Gruber, P.R. Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polym. Degrad. Stab. 2003, 80, 403–419. [Google Scholar] [CrossRef]
- Zwawi, M. A Review on Natural Fiber Bio-Composites, Surface Modifications and Applications. Molecules 2021, 26, 404. [Google Scholar] [CrossRef]
- Bayart, M. Élaboration et Caractérisation de Biocomposites À Base D’acide Polylactique et de Fibres de Lin: Compatibilisation Interfaciale Par Dépôt de Revêtements À Base D’époxy, de Dioxyde de Titane, de Lignine ou de Tanin. Ph.D. Thesis, University of Sherbrooke, Sherbrooke, QC, Canada, 2019. [Google Scholar]
- Auras, R.A.; Harte, B.; Selke, S.; Hernandez, R. Mechanical, Physical, and Barrier Properties of Poly(Lactide) Films. Journal of Plastic Film & Sheeting. J. Plast. Film. 2003, 19, 123–135. [Google Scholar] [CrossRef]
- Bajwa, D.S.; Bhattacharjee, S. Current Progress, Trends and Challenges in the Application of Biofiber Composites by Automotive Industry. J. Nat. Fibers 2006, 13, 660–690. [Google Scholar] [CrossRef]
- P Ovlaque, P. Valorisation de la Fibre D’asclépiade pour le Renforcement de Matrices Organiques. Ph.D. Thesis, University of Sherbrooke, Sherbrooke, QC, Canada, 2019. [Google Scholar]
- Yang, X.; Huang, L.Q.; Cheng, L.D. Study on the Structure and the Properties of Akund Fiber. Appl. Mech. Mater. 2012, 217–219, 617–621. [Google Scholar] [CrossRef]
- Karthik, T.; Murugan, R. A Potential Sustainable Natural Fibre Crop. In Sustainable Fibres for Fashion Industry; Muthu, S.S., Gardetti, M., Eds.; Springer: Singapore, 2016; pp. 111–146. [Google Scholar]
- Azwa, Z.N.; Yousif, B.F.; Manalo, A.C.; Karunasena, W. A review on the degradability of polymeric composites based on natural fibres. Mater. Des. 2013, 47, 424–442. [Google Scholar] [CrossRef]
- Richard, C.; Cousin, P.; Foruzanmehr, M.; Elkoun, S.; Robert, M. Characterization of components of milkweed floss fiber. Sep. Sci. Technol. 2019, 54, 3091–3099.24. [Google Scholar] [CrossRef]
- Reddy, N.; Yang, Y. Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol. 2005, 23, 22–27. [Google Scholar] [CrossRef]
- Müller, U.; Jost, T.; Kurzböck, C.; Stadlmann, A.; Wagner, W.; Kirschbichler, S.; Baumann, G.; Pramreiter, M.; Feist, F. Crash simulation of wood and composite wood for future automotive engineering. Wood Mater. Sci. Eng. 2020, 15, 312–324. [Google Scholar] [CrossRef]
- Mussig, J. What Are Natural Fibres. In Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications; Müssig, J., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2010; pp. 41–46. [Google Scholar]
- Sanchez-Diaz, S.; Ouellet, C.; Elkoun, S.; Robert, M. Evaluating the Properties of Native and Modified Milkweed Floss for Applications as a Reinforcing Fiber. J. Nat. Fibers 2023, 20, 2174630. [Google Scholar] [CrossRef]
- Robert, M. Reach the Ultimate Frontier of Lightweight Composites with American Silk Fiber. In Proceedings of the Composite and Advanced Materials Expo, Anaheim, CA, USA, 26–29 September 2016. [Google Scholar]
- Reddy, N.; Yang, Y. Non-traditional lightweight polypropylene composites reinforced with milkweed floss. Polym. Int. 2010, 59, 884–890. [Google Scholar] [CrossRef]
- Ganesan, P.; Karthik, T. Development of acoustic nonwoven materials from kapok and milkweed fibres. J. Text. Inst. 2016, 107, 477–482. [Google Scholar] [CrossRef]
- Shinde, N.G.; Patel, D.M. A Short Review on Automobile Dashboard Materials. OP Conf. Ser. Mater. Sci. Eng. 2020, 810, 012033. [Google Scholar] [CrossRef]
- Sapuan, S.M.; Mun, N.K.; Hambali, A.; Lok, H.Y.; Fairuz, A.M.; Ishak, M.R. I Prototype expert system for material selection of polymeric composite automotive dashboard. Int. J. Phys. Sci. 2011, 6, 5988–5995. [Google Scholar]
- Gharehaghaji, A.A.; Davoodi, S.H. Mechanical damage to estabragh fibers in the production of thermobonded layers. J. Appl. Polym. Sci. 2008, 109, 3062–3069. [Google Scholar] [CrossRef]
- Karthik, T.; Murugan, R. Spinnability of cotton/milkweed blends on ring, compact and rotor spinning systems Indian. J. Fibre Text. Res. 2016, 41, 26–32. [Google Scholar]
- Thangavel, K.; Murugan, R. Influence of spinning parameters on milkweed/cotton DREF-3 yarn properties. J. Text. Inst. 2013, 104, 938–949. [Google Scholar]
- Lupescu, D.; Robert, M.; Elkoun, S. Development of Acoustic Insulating Carpets from Milkweed Fibers Using Air-Laid Spike Process. Fibers 2025, 13, 4. [Google Scholar] [CrossRef]
- Rajinipriya, M.; Nagalakshmaiah, M.; Astruc, J.; Robert, M.; Elkoun, S. Single stage purification of flax, hemp, and milkweed stem and their physical and morphological properties. Int. J. Polym. Anal. Charact. 2018, 23, 78–88. [Google Scholar] [CrossRef]
- Zhou, H.; Long, Y.; Meng, A.; Chen, S.; Li, Q.; Zhang, Y. A novel method for kinetics analysis of pyrolysis of hemicellulose, cellulose, and lignin in TGA and macro-TGA. RSC Adv. 2015, 5, 26509–26516. [Google Scholar] [CrossRef]
- Xiang, S.; Feng, L.; Bian, X.; Li, G.; Chen, X. Evaluation of PLA content in PLA/PBAT blends using TGA. Polym. Test. 2020, 81, 106211. [Google Scholar] [CrossRef]
- Bhiogade, A.; Kannan, M.; Devanathan, S. Degradation kinetics study of Poly lactic acid(PLA) based biodegradable green composites. Mater. Today Proc. 2020, 24, 806–814. [Google Scholar] [CrossRef]
- Kopitar, D. Study on the Influence of Calendaring Process on Thermal Resistance of Polypropylene Nonwoven Fabric Structure. J. Fiber Bioeng. Inform. 2014, 7, 1–11. [Google Scholar] [CrossRef]
- Kucukali Ozturk, M.; Venkataraman, M.; Mishra, R. Influence of structural parameters on thermal performance of polypropylene nonwovens. Polym. Adv. Technol. 2018, 29, 3027–3034. [Google Scholar] [CrossRef]
- Jirsak, O.; Sadikoglu, T.G.; Ozipek, B.; Pan, N. Thermo-Insulating Properties of Perpendicular-Laid Versus Cross-Laid Lofty Nonwoven Fabrics. Text. Res. J. 2000, 70, 121–128. [Google Scholar] [CrossRef]
- Song, Y.S.; Youn, J.R. Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 2005, 43, 1378–1385. [Google Scholar] [CrossRef]
- Yachmenev, V.G.; Parikh, D.V.; Calamari, T.A. Thermal Insulation Properties of Cellulosic-based Nonwoven Composites. J. Ind. Text. 2002, 36, 73–87. [Google Scholar] [CrossRef]
- NagarajaGanesh, B.; Rekha, B.; Yoganandam, K. Assessment of thermal insulation and flame retardancy of cellulose fibers reinforced polymer composites for automobile interiors. J. Nat. Fibers 2022, 19, 11021–11029. [Google Scholar] [CrossRef]
- Islam, S.; Mominul Alam, S.M. Investigation of the acoustic properties of needle punched nonwoven produced of blend with sustainable fibers. Int. J. Cloth. Sci. Technol. 2018, 30, 444–458. [Google Scholar] [CrossRef]
- Koruk, H.; Ozcan, A.C.; Genc, G.; Sanliturk, K.Y. Jute and Luffa Fiber-Reinforced Biocomposites: Effects of Sample Thickness and Fiber/Resin Ratio on Sound Absorption and Transmission Loss Performance. J. Nat. Fibers 2022, 19, 6239–6254. [Google Scholar] [CrossRef]
- Tan, W.H.; Lim, E.; Chuah, H.; Cheng, E.; Lam, C. Sound Transmission Loss of Natural Fiber Panel. Int. J. Mech. 2016, 16, 33–42. [Google Scholar]
- M Messiry, M.E.; Al-Oufy, A.K.; Ayman, Y.; Abdel Latif, S. Statistical analysis of the effect of processing machine parameters on acoustical absorptive properties of needle-punched nonwovens. J. Eng. Fibers Fabr. 2023, 18, 15589250231155623. [Google Scholar] [CrossRef]
- El Messiry, M.; Ayman, Y. Investigation of sound transmission loss of natural fiber/rubber crumbs composite panels. J. Ind. Text. 2022, 51, 5347S–5369S. [Google Scholar] [CrossRef]
- Hasani, H.; Zarrebini, M.; Zare, M.; Hassanzadeh, S. An Investigation into Acoustic Properties of Lightly Needled Estabragh Nonwovens Using the Taguchi Method. J. Eng. Fibers Fabr. 2014, 9, 155892501400900303. [Google Scholar]
- Dharmendrasinh Vikramsinh, B. Study Acoustic Properties of Estrabragh-Kapok Natural Fiber Fabric for Technical Uses. Ph.D. Thesis, Maharaja Sayajirao University of Baroda, Vadodara, India, 2020. [Google Scholar]
- Dréan, J.Y.F.; Patry, J.J.; Lombard, G.F.; Weltrowski, M. Mechanical Characterization and Behavior in Spinning Processing of Milkweed Fibers. Text. Res. J. 1993, 8, 443–450. [Google Scholar] [CrossRef]
- Mylsamy, K.; Rajendran, I. Influence of alkali treatment and fibre length on mechanical properties of short Agave fibre reinforced epoxy composites. Mater. Des. 2011, 32, 4629–4640. [Google Scholar] [CrossRef]
- Shibata, S.; Cao, Y.; Fukumoto, I. Flexural modulus of the unidirectional and random composites made from biodegradable resin and bamboo and kenaf fibres. Compos. Part A Appl. Sci. Manuf. 2008, 39, 640–646. [Google Scholar] [CrossRef]
- Manalo, A.; Karunasena, W.M.; Lau, K.T. Mechanical properties of bamboo fiber-polyester composites. In Proceedings of the 22nd Australasian Conference on the Mechanics of Structures and Materials, Sydney, Australia, 11–14 December 2012. [Google Scholar]
- Lim, T.-T.; Huang, X. Evaluation of hydrophobicity/oleophilicity of kapok and its performance in oily water filtration: Comparison of raw and solvent-treated fibers. Ind. Crops Prod. 2007, 26, 125–134. [Google Scholar] [CrossRef]
- Atmakuri, A.; Palevicius, A.; Siddabathula, M.; Vilkauskas, A.; Janusas, G. Analysis of Mechanical and Wettability Properties of Natural Fiber-Reinforced Epoxy Hybrid Composites. Polymers 2020, 12, 2827. [Google Scholar] [CrossRef]
Fiber | Fineness (dtex) | Fiber Length (mm) | Fiber Diameter (μm) | Density (g/cm3) |
---|---|---|---|---|
MW | 0.84–2.2 | 25 ± 3 | 22 ± 6 | 0.30 [16] |
PLA | 1.5 * | 51 ± 0.4 | 12.2 ± 1 | 1.28 |
Sample | Number of Layers | Milkweed Fiber Mass (g) | PLA Fiber Mass (g) |
---|---|---|---|
C1 | 6 | 52.17 | 17.39 |
C2 | 7 | 56.84 | 18.95 |
C3 | 10 | 85.60 | 28.53 |
Sample | Mean Ma (g/m2) | SD * Ma (g/m2) | Mean TH (mm) | SD * TH (mm) | Density (kg/m3) |
---|---|---|---|---|---|
Bio-composite 1 (C1) | 748.76 | 0.35 | 1.40 | 0.33 | 534.83 |
Bio-composite 2 (C2) | 815.73 | 0.39 | 1.41 | 0.25 | 578.53 |
Bio-composite 3 (C3) | 1228.49 | 1.58 | 2.40 | 0.42 | 511.87 |
Tensile and Flexural Samples | Weight of Milkweed (g) | Weight of PLA (g) |
---|---|---|
Sample Tensile C1 (STC1) | 3.50 | 1.17 |
Sample Tensile C2 (STC2) | 3.86 | 1.29 |
Sample Tensile C3 (STC3) | 5.80 | 1.99 |
Sample Flexural C1 (SFC1) | 0.37 | 1.12 |
Sample Flexural C2 (SFC2) | 0.39 | 1.13 |
Sample Flexural C3 (SFC3) | 0.60 | 0.20 |
Samples | Storage Modulus (E′) (MPa) |
---|---|
C1 | 1273 ± 80 |
C2 | 1190 ± 87 |
C3 | 1100 ± 77 |
Samples | Contact Angle (°) |
---|---|
C1 | 179.7 ± 0.3 |
C2 | 179.8 ± 0.1 |
C3 | 179.7 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lupescu, D.; Cousin, P.; Robert, M.; Elkoun, S. Development of Bio-Composites from Milkweed Fibers Using Air-Laid Spike Process for Automobile Dashboard Applications. Materials 2025, 18, 618. https://doi.org/10.3390/ma18030618
Lupescu D, Cousin P, Robert M, Elkoun S. Development of Bio-Composites from Milkweed Fibers Using Air-Laid Spike Process for Automobile Dashboard Applications. Materials. 2025; 18(3):618. https://doi.org/10.3390/ma18030618
Chicago/Turabian StyleLupescu, Deborah, Patrice Cousin, Mathieu Robert, and Said Elkoun. 2025. "Development of Bio-Composites from Milkweed Fibers Using Air-Laid Spike Process for Automobile Dashboard Applications" Materials 18, no. 3: 618. https://doi.org/10.3390/ma18030618
APA StyleLupescu, D., Cousin, P., Robert, M., & Elkoun, S. (2025). Development of Bio-Composites from Milkweed Fibers Using Air-Laid Spike Process for Automobile Dashboard Applications. Materials, 18(3), 618. https://doi.org/10.3390/ma18030618