Use of Biopowders as Adsorbents of Potentially Toxic Elements Present in Aqueous Solutions
Abstract
:1. Introduction
2. Material and Methods
2.1. Biopowders Used
2.2. Adsorption–Desorption Experiments
2.3. Adsorption Experiments with Varying pH
2.4. Data Treatment
3. Results and Discussion
3.1. The Adsorption–Desorption of PTEs by the Biopowders
3.2. Adsorption Isotherms
3.3. PTE Adsorption as a Function of pH
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mullineaux, S.T.; McKinley, J.M.; Marks, N.J.; Scantlebury, D.M.; Doherty, R. Heavy metal (PTE) ecotoxicology, data review: Traditional vs. a compositional approach. Sci. Total Environ. 2021, 769, 145246. [Google Scholar] [CrossRef] [PubMed]
- Nieder, R.; Benbi, D. Potentially toxic elements in the environment—A review of sources, sinks, pathways and mitigation measures. Rev. Environ. Health 2024, 39, 561–575. [Google Scholar] [CrossRef]
- Wani, Z.A.; Ahmad, Z.; Asgher, M.; Bhat, J.A.; Sharma, M.; Kumar, A.; Sharma, V.; Kumar, A.; Pant, S.; Lukatkin, A.S.; et al. Phytoremediation of Potentially Toxic Elements: Role, Status and Concerns. Plants 2023, 12, 429. [Google Scholar] [CrossRef]
- Han, F.X.; Banin, A.; Kingery, W.L.; Triplett, G.B.; Zhou, L.X.; Zheng, S.J.; Ding, W.X. New approach to studies of heavy metal redistribution in soil. Adv. Environ. Res. 2003, 8, 113–120. [Google Scholar] [CrossRef]
- Carpenter, S.R. Phosphorus control is critical to mitigating eutrophication. Proc. Natl. Acad. Sci. USA 2008, 105, 11039–11040. [Google Scholar] [CrossRef]
- Tambornino, F.; Tanner, E.E.L.; Amin, H.M.A.; Holter, J.; Claridge, T.; Compton, R.G.; Goicoechea, J.M. Electrochemical Oxidation of the Phospha- and Arsaethynolate Anions, PCO– and AsCO–. Eur. J. Inorg. Chem. 2019, 2019, 1644–1649. [Google Scholar] [CrossRef]
- Fosu-Mensah, B.; Okoffo, E.D.; Darko, G.; Gordon, C. Organophosphorus pesticide residues in soils and drinking water sources from cocoa producing areas in Ghana. Environ. Syst. Res. 2016, 5, 10. [Google Scholar] [CrossRef]
- Jaiswal, D.K.; Krishna, R.; Singh, S.; Belwal, T.; Verma, J.P.; Yadav, J. Toxicity of Organophosphate Pesticide on Soil Microorganism: Risk Assessments Strategies. In Emerging Trends in Plant Pathology; Singh, K.P., Jahagirdar, S., Sarma, B.K., Eds.; Springer: Singapore, 2021; pp. 257–295. [Google Scholar]
- Wang, Y.; Cui, Y.; Wang, K.; He, X.; Dong, Y.; Li, S.; Wang, Y.; Yang, H.; Chen, X.; Zhang, W. The agronomic and environmental assessment of soil phosphorus levels for crop production: A meta-analysis. Agron. Sustain. Dev. 2023, 43, 35. [Google Scholar] [CrossRef]
- WWTPs. Proposal for a Directive Concerning Urban Wastewater Treatment (Recast); Directorate-General for Environment, European Commission: Luxembourg, 2022. [Google Scholar]
- Canadian Council of Ministers of the Environment. Canadian Environmental Quality Guidelines; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 2004. [Google Scholar]
- Zandsalimi, S.; Karimi, N.; Kohandel, A. Arsenic in soil, vegetation and water of a contaminated region. Int. J. Environ. Sci. Technol. 2011, 8, 331–338. [Google Scholar] [CrossRef]
- Cheung, J.S.; Hu, X.F.; Parajuli, R.P.; Rosol, P.; Torng, A.; Mohapatra, A.; Lye, E.; Chan, H.M. Health risk assessment of arsenic exposure among the residents in Ndilǫ, Dettah, and Yellowknife, Northwest Territories, Canada. Int. J. Hyg. Environ. Health 2020, 230, 113623. [Google Scholar] [CrossRef]
- Stöhrer, G. Arsenic: Opportunity for risk assessment. Arch. Toxicol. 1991, 65, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press Taylor and Francis Group LLC: Boca Raton, FL, USA, 2011; p. 520. [Google Scholar]
- Nóvoa-Muñoz, J.C.; Queijeiro, J.M.G.; Blanco-Ward, D.; Álvarez-Olleros, C.; García-Rodeja, E.; Martínez-Cortizas, A. Arsenic fractionation in agricultural acid soils from NW Spain using a sequential extraction procedure. Sci. Total Environ. 2007, 378, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Abbas, G.; Murtaza, B.; Bibi, I.; Shahid, M.; Niazi, N.K.; Khan, M.I.; Amjad, M.; Hussain, M. Natasha, Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects. Int. J. Environ. Res. Public Health 2018, 15, 59. [Google Scholar] [CrossRef] [PubMed]
- Pais, I.; Jones, J.B.J. The Handbook of Trace Elements, 1st ed.; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Smith, E.; Naidu, R.; Alston, A.M. Arsenic in the Soil Environment: A Review. Adv. Agron. 1998, 64, 149–195. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Singh, P.; Itankar, N.; Patil, Y. Biomanagement of hexavalent chromium: Current trends and promising perspectives. J. Environ. Manag. 2021, 279, 111547. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.P.; Sabino, M.A.; Fernandes, E.M.; Correlo, V.M.; Boesel, L.F.; Reis, R.L. Cork: Properties, capabilities and applications. Int. Mater. 2005, 50, 345–365. [Google Scholar] [CrossRef]
- Gil, L. Cork powder waste: An overview. Biomass Bioenergy 1997, 13, 59–61. [Google Scholar] [CrossRef]
- Blini Marengo Malheiros, F.; Vicente, E.F.; Gois Morales, A.; Alberto-Silva, C. Efficiency of the removal of tetraethyl pyrophosphate (TEPP) pesticide in water: Use of cork granules as a natural adsorbent on acetylcholinesterase activity in neuronal PC12 cell. J. Environ. Sci. Health-Part B Pestic. Food Contam. Agric. Wastes 2022, 57, 554–560. [Google Scholar] [CrossRef]
- Ana Dulce, A. Use of Cork Byproducts in the Removal of Arsenic from Water and Wastewater. Master’s Thesis, Repositório aberto da Universidade do Porto, Porto, Portugal, 2015. [Google Scholar]
- Fiol, N.; Villaescusa, I.; Martínez, M.; Miralles, N.; Poch, J.; Serarols, J. Biosorption of Cr(VI) using low cost sorbents. Environ. Chem. Lett. 2003, 1, 135–139. [Google Scholar] [CrossRef]
- Sfaksi, Z.; Azzouz, N.; Abdelwahab, A. Removal of Cr(VI) from water by cork waste. Arab. J. Chem. 2014, 7, 37–42. [Google Scholar] [CrossRef]
- González-Feijoo, R.; Santás-Miguel, V.; Arenas-Lago, D.; Álvarez-Rodríguez, E.; Núñez-Delgado, A.; Arias-Estévez, M.; Pérez-Rodríguez, P. Effectiveness of cork and pine bark powders as biosorbents for potentially toxic elements present in aqueous solution. Environ. Res. 2024, 250, 118455. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Santás-Miguel, V.; Cela-Dablanca, R.; Pérez-Rodríguez, P.; Núñez-Delgado, A.; Álvarez-Rodríguez, E.; Rodríguez-Seijo, A.; Arias-Estévez, M. Valorization of forest by-products as bio-adsorbents for emerging contaminants. J. Environ. Chem. Eng. 2023, 11, 111437. [Google Scholar] [CrossRef]
- Cutillas-Barreiro, L.; Ansias-Manso, L.; Fernández-Calviño, D.; Arias-Estévez, M.; Nóvoa-Muñoz, J.C.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A. Pine bark as bio-adsorbent for Cd, Cu, Ni, Pb and Zn: Batch-type and stirred flow chamber experiments. J. Environ. Manag. 2014, 144, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Gómez Armesto, A.; Nóvoa Muñoz, J.C.; Arias Estévez, M.; Núñez Delgado, A.; Álvarez Rodríguez, E.; Fernández Sanjurjo, M.J. Introducing Students to Remediation of Polluted Soils: Influence of Waste-Based Amendments on Cd Extractability. J. Chem. Educ. 2020, 97, 221–225. [Google Scholar] [CrossRef]
- Irfan, M.I.; Sadiq, M.; Zohra, L.; Siddique, A.B.; Yousaf, M.; Rubab, M.; Urooj, K.; Aziz, A.; Ali, H.; Fatima, M.; et al. Chemical modification of Pinus walliichiana sawdust: Application in membrane system for efficient purification of groundwater containing Cd(II) and Ni(II). J. Water Process Eng. 2024, 68, 106337. [Google Scholar] [CrossRef]
- Campillo-Cora, C.; Soto-Gómez, D.; Arias-Estévez, M.; Fernández-Calviño, D. Assessment of Polluted Soil Remediation Using Bacterial Community Tolerance to Heavy Metals as an Indicator. Agronomy 2022, 12, 2280. [Google Scholar] [CrossRef]
- Santás-Miguel, V.; Fernández-Sanjurjo, M.J.; Núñez-Delgado, A.; Álvarez-Rodríguez, E.; Díaz-Raviña, M.; Arias-Estévez, M.; Fernández-Calviño, D. Use of waste materials to prevent tetracycline antibiotics toxicity on the growth of soil bacterial communities. Environ. Res. 2021, 193, 110404. [Google Scholar] [CrossRef]
- Lopes, C.B.; Oliveira, J.R.; Rocha, L.S.; Tavares, D.S.; Silva, C.M.; Silva, S.P.; Hartog, N.; Duarte, A.C.; Pereira, E. Cork stoppers as an effective sorbent for water treatment: The removal of mercury at environmentally relevant concentrations and conditions. Environ. Sci. Pollut. Res. 2014, 21, 2108–2121. [Google Scholar] [CrossRef]
- Kumar, N.S.; Che Man, H.; Woo, H.S. Biosorption of phenolic compounds from aqueous solutions using pine (Pinus densiflora Sieb) bark powder. BioResources 2014, 9, 5155–5174. [Google Scholar]
- Barros, D.; Fernandes, E.; Jesus, M.; Barros, L.; Alonso-Esteban, J.I.; Pires, P.; Vaz Velho, M. The Chemical Characterisation of the Maritime Pine Bark Cultivated in Northern Portugal. Plants 2023, 12, 3940. [Google Scholar] [CrossRef] [PubMed]
- Cela-Dablanca, R.; Barreiro, A.; Ferreira-Coelho, G.; Campillo-Cora, C.; Pérez-Rodríguez, P.; Arias-Estévez, M.; Núñez-Delgado, A.; Álvarez-Rodríguez, E.; Fernández-Sanjurjo, M.J. Cu and As(V) Adsorption and Desorption on/from Different Soils and Bio-Adsorbents. Materials 2022, 15, 5023. [Google Scholar] [CrossRef] [PubMed]
- Giles, C.H.; Smith, D.; Huitson, A. A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J. Colloid Interface Sci. 1974, 47, 755–765. [Google Scholar] [CrossRef]
- Calvet, R. Adsorption of organic chemicals in soils. Environ. Health Perspect. 1989, 83, 145–177. [Google Scholar] [CrossRef] [PubMed]
- Romar-Gasalla, A.; Santás-Miguel, V.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M.; Álvarez-Rodríguez, E.; Núñez-Delgado, A.; Fernández-Sanjurjo, M.J. Chromium and fluoride sorption/desorption on un-amended and waste-amended forest and vineyard soils and pyritic material. J. Environ. Manag. 2018, 222, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Yeager, T.H.; Wright, R.D. Pine bark—Phosphorus relationships. Commun. Soil Sci. Plant Anal. 1982, 13, 57–66. [Google Scholar] [CrossRef]
- Paradelo, R.; Conde-Cid, M.; Arias-Estévez, M.; Nóvoa-Muñoz, J.C.; Álvarez-Rodríguez, E.; Fernández-Sanjurjo, M.J.; Núñez-Delgado, A. Removal of anionic pollutants by pine bark is influenced by the mechanism of retention. Chemosphere 2017, 167, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Pintor, A.M.A.; Ferreira, C.I.A.; Pereira, J.C.; Correia, P.; Silva, S.P.; Vilar, V.J.P.; Botelho, C.M.S.; Boaventura, R.A.R. Use of cork powder and granules for the adsorption of pollutants: A review. Water Res. 2012, 46, 3152–3166. [Google Scholar] [CrossRef] [PubMed]
- Pintor, A.M.A.; Vieira, B.R.C.; Brandão, C.C.; Boaventura, R.A.R.; Botelho, C.M.S. Complexation mechanisms in arsenic and phosphorus adsorption onto iron-coated cork granulates. J. Environ. Chem. Eng. 2020, 8, 104184. [Google Scholar] [CrossRef]
- Carneiro, M.A.; Pintor, A.M.A.; Boaventura, R.A.R.; Botelho, C.M.S. Efficient removal of arsenic from aqueous solution by continuous adsorption onto iron-coated cork granulates. J. Hazard. Mater. 2022, 432, 128657. [Google Scholar] [CrossRef]
- Pintor, A.M.A.; Vieira, B.R.C.; Santos, S.C.R.; Boaventura, R.A.R.; Botelho, C.M.S. Arsenate and arsenite adsorption onto iron-coated cork granulates. Sci. Total Environ. 2018, 642, 1075–1089. [Google Scholar] [CrossRef] [PubMed]
- Seco-Reigosa, N.; Bermúdez-Couso, A.; Garrido-Rodríguez, B.; Arias-Estévez, M.; Fernández-Sanjurjo, M.J.; Álva-rez-Rodríguez, E.; Núñez-Delgado, A. As(V) retention on soils and forest by-products and other waste materials. Environ. Sci. Pollut. Res. Int. 2013, 20, 6574–6583. [Google Scholar] [CrossRef] [PubMed]
- Quintáns-Fondo, A.; Ferreira-Coelho, G.; Paradelo-Núñez, R.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A. F sorption/desorption on two soils and on different by-products and waste materials. Environ. Sci. Pollut. Res. 2016, 23, 14676–14685. [Google Scholar] [CrossRef] [PubMed]
- Romar-Gasalla, A.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A. Controlling risks of P water pollution by sorption on soils, pyritic material, granitic material, and different by-products: Effects of pH and incubation time. Environ. Sci. Pollut. Res. 2019, 26, 11558–11564. [Google Scholar] [CrossRef] [PubMed]
- Pokorny, F.A.; Wetzstein, H.Y. Internal Porosity, Water Availability, and Root Penetration of Pine Bark Particles. HortScience 1984, 19, 447–449. [Google Scholar] [CrossRef]
- Jesus, J.; Nunes da Silva, R.; Pintor, A. Advances in Cork Use in Adsorption Applications: An Overview of the Last Decade of Research. Separations 2023, 10, 390. [Google Scholar] [CrossRef]
- Quintáns-Fondo, A.; Ferreira-Coelho, G.; Arias-Estévez, M.; Nóvoa-Muñoz, J.C.; Fernández-Calviño, D.; Álvarez-Rodríguez, E.; Fernández-Sanjurjo, M.J.; Núñez-Delgado, A. Chromium VI and Fluoride Competitive Adsorption on Different Soils and By-Products. Processes 2019, 7, 748. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 1100–1107. [Google Scholar]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Chubar, N.; Carvalho, J.R.; Correia, M.J.N. Cork biomass as biosorbent for Cu(II), Zn(II) and Ni(II). Colloids Surf. Physicochem. Eng. Aspects. 2003, 230, 57–65. [Google Scholar] [CrossRef]
- Fiol, N.; Villaescusa, I. Determination of sorbent point zero charge: Usefulness in sorption studies. Environ. Chem. Lett. 2009, 7, 79–84. [Google Scholar] [CrossRef]
- Castellar, J.A.C.; Formosa, J.; Fernández, A.I.; Jové, P.; Bosch, M.G.; Morató, J.; Brix, H.; Arias, C.A. Cork as a sustainable carbon source for nature-based solutions treating hydroponic wastewaters—Preliminary batch studies. Sci. Total Environ. 2019, 650, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.; Lovering, K.; Bu, W.; Uysal, A. Anions Enhance Rare Earth Adsorption at Negatively Charged Surfaces. J. Phys. Chem. Lett. 2020, 11, 4436–4442. [Google Scholar] [CrossRef] [PubMed]
- Fayoud, N.; Tahiri, S.; Alami Younssi, S.; Albizane, A.; Gallart-Mateu, D.; Cervera, M.L.; de la Guardia, M. Kinetic, isotherm and thermodynamic studies of the adsorption of methylene blue dye onto agro-based cellulosic materials. Desalination Water Treat. 2016, 57, 16611–16625. [Google Scholar] [CrossRef]
- Augoustides, V.; Kasera, N.; Kolar, P. Chemical characterization data of raw Loblolly pine bark nuggets. Chem. Data Collect. 2021, 33, 100727. [Google Scholar] [CrossRef]
- Yang, H.; Kim, N.; Park, D. Superior Removal of Toxic Cr(VI) from Wastewaters by Natural Pine Bark. Separations 2023, 10, 430. [Google Scholar] [CrossRef]
- Rivas-Pérez, I.M.; Paradelo-Núñez, R.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A. As(V) and P Competitive Sorption on Soils, By-Products and Waste Materials. Int. J. Environ. Res. Public Health 2015, 12, 15706–15715. [Google Scholar] [CrossRef] [PubMed]
Material | Particle Size | Surface Area | pHw | pHk | C | N | C/N | Cellulose | Hemicellulose | Lignin | Rest * |
---|---|---|---|---|---|---|---|---|---|---|---|
m2/g | ----------%---------- | -----------------------%------------------------ | |||||||||
CB * | Very fine (<100 µm) | 0.57 ± 0.01 | 4.5 ± 0.1 | 3.4 ± 0.0 | 60.37 ± 0.32 | 0.60 ± 0.02 | 100.7 | 4.58 ± 0.03 | 7.45 ± 0.07 | 75.77 ± 0.19 | 12.2 |
PB * | Very fine (<100 µm) | 0.36 ± 0.01 | 4.5 ± 0.1 | 4.0 ± 0.1 | 48.6 ± 2.00 | 0.08 ± 0.02 | 607.5 | 18.60 ± 0.10 | 14.70 ± 0.30 | 47.90 ± 0.03 | 4.1 |
Material | PTE Adsorbed (mmol/kg) | Range of Added Concentrations_mM | Reference | |||
---|---|---|---|---|---|---|
As | Cr | F | P | |||
Cork bark powder | 1022 | 668 | 1068 | 271 | 0.01–10 | This study |
Pine bark powder | 455 | 720 | 471 | 556 | 0.01–10 | This study |
0.37 | 0–0.5 | Yeager and Wright (1982) [42] | ||||
60 | 37 | 0.5–6 | Romar-Gasalla et al., 2018 [41] | |||
Hemp waste | 9 | 16 | 0.5–6 | Romar-Gasalla et al., 2018 [41] | ||
Pine wood ash | 13 | 0.01–1.33 | Seco-Reigosa et al., 2013 [48] | |||
Oak wood ash | 11 | 0.01–1.33 | Seco-Reigosa et al., 2013 [48] | |||
18 | 35 | 0.5–6 | Romar-Gasalla et al., 2018 [41] | |||
55 | Cela-Dablanca et al., 2022 [38] | |||||
26.3 | 0.03–5.26 | Quintáns-Fondo et al., 2016 [49] | ||||
Pine sawdust | 7.5 | 0.01–1.33 | Seco-Reigosa et al., 2013 [48] | |||
22.6 | 3.23 | Romar-Gasalla et al., 2019 [50] | ||||
1 | 0.1–1 | Cela-Dablanca et al., 2022 [38] | ||||
7.9 | 0.03–5.26 | Quintáns-Fondo et al., 2016 [49] | ||||
Yohimbe bark | 731 | 0.19–19.23 | Fiol et al., 2003 [26] | |||
Grape stalk | 1058 | 0.19–19.23 | Fiol et al., 2003 [26] | |||
Olive stone wastes | 154 | 0.19–19.23 | Fiol et al., 2003 [26] | |||
Cork wastes | 288 | 0.19–19.23 | Fiol et al., 2003 [26] | |||
5000.4 | 0.01–9.6 | Sfaksi et al., 2014 [27] | ||||
1.51 | 0.007–0.6 | Almeida, A.D., 2015 [25] | ||||
Pretreated cork wastes | 1.87 | 0.007–0.6 | Almeida, A.D., 2015 [25] |
PTE | Max Retention (%) | |
---|---|---|
CB | PB | |
P | 57 | 70 |
As | 85 | 64 |
F | 99 | 47 |
Cr | 85 | 86 |
Biopowder | FREUNDLICH | LANGMUIR | |||||
---|---|---|---|---|---|---|---|
PTE | KF | n | R2 | KL | Xm | R2 | |
CB | P | 80.1 ± 10.5 | 0.4 ± 0.1 | 0.881 | 1.71 ± 0.24 | 182.9 ± 7.6 | 0.991 |
As | 123,673.0 ± 6972.1 | 1.1 ± 0.0 | 1.000 | - | - | - | |
F | 13,186.2 ± 674.9 | 1.1 ± 0.0 | 0.999 | - | - | - | |
Cr | 294.9 ± 12.6 | 0.8 ± 0.0 | 0.992 | 0.13 ± 0.08 | 2559.4 ± 1278.0 | 0.987 | |
PB | P | 105.8 ± 8.1 | 1.3 ± 0.1 | 0.994 | - | - | - |
As | 266.7 ± 11.1 | 0.3 ± 0.0 | 0.984 | 1.95 ± 0.38 | 486.2 ± 25.2 | 0.986 | |
F | 80.2 ± 6.5 | 1.0 ± 0.0 | 0.993 | 0.02 ± 0.02 | 5071.4 ± 4317.0 | 0.994 | |
Cr | 427.5 ± 7.4 | 0.7 ± 0.0 | 0.997 | 0.48 ± 0.10 | 1393.3 ± 180.8 | 0.991 |
PTE | Added Concentration (mM) | pH | |||
---|---|---|---|---|---|
CB | PB | ||||
ADS | DES | ADS | DES | ||
P | 0 | 5.3 ± 0.2 | 5.8 ± 0.0 | 4.8 ± 0.5 | 4.2 ± 0.1 |
0.01 | 6.5 ± 0.1 | 5.7 ± 0.4 | 5.9 ± 0.1 | 3.9 ± 0.0 | |
0.025 | 6.3 ± 0.1 | 4.9 ± 0.1 | 6.0 ± 0.0 | 3.9 ± 0.1 | |
0.05 | 6.2 ± 0.0 | 5.0 ± 0.1 | 5.9 ± 0.0 | 3.9 ± 0.0 | |
0.1 | 6.3 ± 0.1 | 5.1 ± 0.0 | 5.9 ± 0.2 | 4.0 ± 0.0 | |
0.25 | 5.1 ± 0.1 | 5.9 ± 0.1 | 5.9 ± 0.1 | 4.0 ± 0.0 | |
0.5 | 5.1 ± 0.0 | 5.8 ± 0.0 | 5.6 ± 0.1 | 3.9 ± 0.1 | |
1 | 5.0 ± 0.1 | 5.6 ± 0.0 | 5.1 ± 0.0 | 3.9 ± 0.0 | |
2.5 | 5 ± 0.2 | 5.7 ± 0.1 | 4.9 ± 0.0 | 4.0 ± 0.0 | |
5 | 4.8 ± 0.1 | 5.6 ± 0.1 | 4.8 ± 0.2 | 4.0 ± 0.1 | |
10 | 4.7 ± 0.0 | 5.5 ± 0.0 | 4.5 ± 0.0 | 4.1 ± 0.0 | |
As | 0 | 3.9 ± 0.0 | 3.9 ± 0.1 | 5.1 ± 0.0 | 4.0 ± 0.0 |
0.01 | 6.3 ± 0.1 | 5.4 ± 0.1 | 5.1 ± 0.0 | 4.2 ± 0.1 | |
0.025 | 6.5 ± 0.5 | 5.8 ± 0.9 | 5.0 ± 0.0 | 4.1 ± 0.0 | |
0.05 | 5.8 ± 0.5 | 5.4 ± 0.4 | 4.9 ± 0.0 | 4.2 ± 0.0 | |
0.1 | 6.1 ± 0.0 | 5.4 ± 0.5 | 5.0 ± 0.1 | 4.1 ± 0.0 | |
0.25 | 4.1 ± 0.0 | 4.0 ± 0.0 | 5.1 ± 0.1 | 4.2 ± 0.1 | |
0.5 | 4.4 ± 0.1 | 4.0 ± 0.1 | 5.2 ± 0.0 | 4.1 ± 0.1 | |
1 | 5.2 ± 0.1 | 3.9 ± 0.3 | 5.4 ± 0.0 | 4.0 ± 0.2 | |
2.5 | 6.3 ± 0.0 | 4.6 ± 0.8 | 6.4 ± 0.1 | 4.5 ± 0.0 | |
5 | 6.7 ± 0.0 | 5.6 ± 0.5 | 6.8 ± 0.1 | 4.6 ± 0.6 | |
10 | 7.0 ± 0.1 | 6.6 ± 0.0 | 7.1 ± 0.0 | 5.9 ± 0.2 | |
F | 0 | 3.6 ± 0.0 | 3.4 ± 0.0 | 4.9 ± 0.2 | 4.1 ± 0.3 |
0.01 | 6.1 ± 0.0 | 5.9 ± 0.6 | 5.1 ± 0.0 | 3.9 ± 0.0 | |
0.025 | 5.8 ± 0.4 | 5.3 ± 0.2 | 5.2 ± 0.2 | 4.0 ± 0.1 | |
0.05 | 5.5 ± 0.4 | 4.9 ± 0.3 | 5.3 ± 0.1 | 3.9 ± 0.0 | |
0.1 | 5.4 ± 0.6 | 5.2 ± 0.7 | 5.2 ± 0.0 | 3.8 ± 0.1 | |
0.25 | 3.5 ± 0.0 | 3.4 ± 0.0 | 5.2 ± 0.0 | 4.0 ± 0.1 | |
0.5 | 3.5 ± 0.0 | 3.5 ± 0.0 | 5.4 ± 0.0 | 4.0 ± 0.1 | |
1 | 3.6 ± 0.0 | 3.4 ± 0.0 | 5.5 ± 0.6 | 4.0 ± 0.0 | |
2.5 | 3.7 ± 0.1 | 3.5 ± 0.0 | 4.5 ± 0.1 | 4.1 ± 0.0 | |
5 | 3.9 ± 0.0 | 3.6 ± 0.0 | 4.2 ± 0.0 | 4.2 ± 0.4 | |
10 | 4.1 ± 0.1 | 3.7 ± 0.1 | 4.1 ± 0.0 | 4.3 ± 0.1 | |
Cr | 0 | 4.4 ± 0.1 | 4.3 ± 0.1 | 5.1 ± 0.2 | 4.2 ± 0.0 |
0.01 | 6.2 ± 0.1 | 5.2 ± 0.2 | 5.2 ± 0.0 | 4.3 ± 0.1 | |
0.025 | 6.2 ± 0.7 | 5.6 ± 0.6 | 5.4 ± 0.1 | 4.4 ± 0.1 | |
0.05 | 6.7 ± 0.0 | 6.0 ± 0.3 | 4.9 ± 0.4 | 4.4 ± 0.2 | |
0.1 | 6.6 ± 0.1 | 5.8 ± 0.8 | 5.0 ± 0.1 | 4.9 ± 0.0 | |
0.25 | 4.5 ± 0.0 | 4.3 ± 0.0 | 5.0 ± 0.2 | 4.4 ± 0.0 | |
0.5 | 4.8 ± 0.0 | 4.4 ± 0.0 | 4.7 ± 0.1 | 4.7 ± 0.2 | |
1 | 5.8 ± 0.0 | 4.4 ± 0.0 | 5.0 ± 0.1 | 4.3 ± 0.0 | |
2.5 | 6.3 ± 0.0 | 4.8 ± 0.2 | 5.7 ± 0.0 | 5.1 ± 0.1 | |
5 | 6.4 ± 0.0 | 5.6 ± 0.2 | 6.2 ± 0.1 | 4.2 ± 0.6 | |
10 | 6.3 ± 0.0 | 6.0 ± 0.1 | 6.2 ± 0.1 | 4.0 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santás-Miguel, V.; Lalín-Pousa, V.; Conde-Cid, M.; Rodríguez-Seijo, A.; Pérez-Rodríguez, P. Use of Biopowders as Adsorbents of Potentially Toxic Elements Present in Aqueous Solutions. Materials 2025, 18, 625. https://doi.org/10.3390/ma18030625
Santás-Miguel V, Lalín-Pousa V, Conde-Cid M, Rodríguez-Seijo A, Pérez-Rodríguez P. Use of Biopowders as Adsorbents of Potentially Toxic Elements Present in Aqueous Solutions. Materials. 2025; 18(3):625. https://doi.org/10.3390/ma18030625
Chicago/Turabian StyleSantás-Miguel, Vanesa, Vanesa Lalín-Pousa, Manuel Conde-Cid, Andrés Rodríguez-Seijo, and Paula Pérez-Rodríguez. 2025. "Use of Biopowders as Adsorbents of Potentially Toxic Elements Present in Aqueous Solutions" Materials 18, no. 3: 625. https://doi.org/10.3390/ma18030625
APA StyleSantás-Miguel, V., Lalín-Pousa, V., Conde-Cid, M., Rodríguez-Seijo, A., & Pérez-Rodríguez, P. (2025). Use of Biopowders as Adsorbents of Potentially Toxic Elements Present in Aqueous Solutions. Materials, 18(3), 625. https://doi.org/10.3390/ma18030625