Numerical Fatigue Analysis of Dissimilar Lap Joints Fabricated by Dimple Spot Welding for Automotive Application
Abstract
:1. Introduction
2. Theoretical Background
3. Dimple Spot Welding
3.1. Geometry
3.2. Materials
3.3. Fatigue Strength
4. Numerical Analysis of Dimple Spot Welding
4.1. FE Model
4.2. Results with Frictionless Simulation
4.3. Results with Friction Simulation
4.4. Results with Friction Simulation and Fatigue Loading Simulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karabulut, B.; Rossi, B. On the applicability of the hot spot stress method to high strength duplex and carbon steel welded details. Eng. Fail. Anal. 2021, 128, 105629. [Google Scholar] [CrossRef]
- Zhou, F.; Chen, Y.; Wang, W.; Xie, W.; Ying, T.; Yue, G. Investigation of hot spot stress for welded tubular K-joints with stiffeners. J. Constr. Steel Res. 2022, 197, 107452. [Google Scholar] [CrossRef]
- Sonsino, C.; Baumgartner, J.; Breitenberger, M. Equivalent stress concepts for transforming of variable amplitude into constant amplitude loading and consequences for design and durability approval. Int. J. Fatigue 2022, 162, 106949. [Google Scholar] [CrossRef]
- Mallick, P. Materials, Design and Manufacturing for Lightweight Vehicles; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Gerstmann, T.; Awiszus, B. Hybrid joining: Numerical process development of flat-clinch-bonding. J. Mater. Process. Technol. 2021, 277, 116421. [Google Scholar] [CrossRef]
- Galinska, A.; Galinski, C. Mechanical joining of fibre reinforced polymer composites to metals—A review. Part II: Riveting, clinching, non-adhesive form-locked joints, pin and loop joining. Polymers 2020, 12, 1681. [Google Scholar] [CrossRef]
- Eshtayeh, M.; Hrairi, M.; Mohiuddin, A. Clinching process for joining dissimilar materials: State of the art. Int. J. Adv. Manuf. Technol. 2016, 82, 179–195. [Google Scholar] [CrossRef]
- Schramm, B.; Martin, S.; Steinfelder, C.; Bielak, C.R.; Brosius, A.; Meschut, G.; Tröster, T.; Wallmersperger, T.; Mergheim, J. A Review on the Modeling of the Clinching Process Chain—Part I: Design Phase. J. Adv. Join. Process. 2022, 6, 100133. [Google Scholar] [CrossRef]
- Schramm, B.; Friedlein, J.; Gröger, B.; Bielak, C.; Bobbert, M.; Gude, M.; Meschut, G.; Wallmersperger, T.; Mergheim, J. A Review on the Modeling of the Clinching Process Chain—Part II: Joining Process. J. Adv. Join. Process. 2022, 6, 100134. [Google Scholar] [CrossRef]
- Schramm, B.; Harzheim, S.; Weiß, D.; Joy, T.D.; Hofmann, M.; Mergheim, J.; Wallmersperger, T. A Review on the Modeling of the Clinching Process Chain—Part III: Operational Phase. J. Adv. Join. Process. 2022, 6, 100135. [Google Scholar] [CrossRef]
- Ma, Y.; Lou, M.; Li, Y.; Lin, Z. Effect of rivet and die on self-piercing rivetability of AA6061-T6 and mild steel CR4 of different gauges. J. Mech. Work. Technol. 2018, 251, 282–294. [Google Scholar] [CrossRef]
- Hahn, O.; Meschut, G.; Peetz, A. Mechanical properties of punchriveted and adhesive-bonded aluminum sheets. Weld. Cut. 1999, 51, E130–E134. [Google Scholar]
- Fu, M.; Mallick, P. Fatigue of self-piercing riveted joints in aluminum alloy 6111. Int. J. Fatigue 2003, 25, 183–189. [Google Scholar] [CrossRef]
- Fu, M.; Mallick, P. Effect of Process Variables on the Static and Fatigue Properties of Self-Piercing Riveted Joints in Aluminum Alloy 5754; Society of Automotive Engineers: Warrendale, PA, USA, 2001. [Google Scholar]
- Pickin, C.; Young, K.; Tuersley, I. Joining of lightweight sandwich sheets to aluminium using self-pierce riveting. Mater. Des. 2006, 28, 2361–2365. [Google Scholar] [CrossRef]
- Haque, R.; Beynon, J.H.; Durandet, Y.; Kirstein, O.; Blacket, S. Feasibility of measuring residual stress profile in different self-pierce riveted joints. Sci. Technol. Weld. Join. 2012, 17, 60–68. [Google Scholar] [CrossRef]
- Dong, H.; Chen, S.; Song, Y.; Guo, X.; Zhang, X.; Sun, Z. Refilled friction stir spot welding of aluminum alloy to galvanized steel sheets. Mater. Des. 2016, 94, 457–466. [Google Scholar] [CrossRef]
- Meschut, G.; Merklein, M.; Brosius, A.; Drummer, D.; Fratini, L.; Füssel, U.; Gude, M.; Homberg, W.; Martins, P.; Bobbert, M.; et al. Review on mechanical joining by plastic deformation. J. Adv. Join. Process. 2022, 5, 100113. [Google Scholar] [CrossRef]
- Li, D.; Han, L.; Thornton, M.; Shergold, M. Influence of rivet to sheet edge distance on fatigue strength of self-piercing riveted aluminium joints. Mater. Sci. Eng. A 2012, 558, 242–252. [Google Scholar] [CrossRef]
- Sakaguchi, M.; Kurokawa, Y.; Nakamura, F.; Hashimura, T. Fatigue strength of steel–aluminum alloy dissimilar lap joints fabricated by dimple spot welding for automotive application. Fatigue Fract. Eng. Mater. Struct. 2024, 47, 939–951. [Google Scholar] [CrossRef]
- Livieri, P.; Tovo, R. Fatigue strength of aluminium welded joints by a non-local approach. Int. J. Fatigue 2020, 143, 106000. [Google Scholar] [CrossRef]
- Livieri, P.; Tovo, R. Overview of the geometrical influence on the fatigue strength of steel butt welds by a nonlocal approach. Fatigue Fract. Eng. Mater. Struct. 2019, 43, 502–514. [Google Scholar] [CrossRef]
- Livieri, P.; Tovo, R. Optimization of Welded Joints under Fatigue Loadings. Metals 2024, 14, 613. [Google Scholar] [CrossRef]
- Peerlings, R.H.J.; de Borst, R.; Brekelmans, W.A.M.; de Vree, J.H.P. Gradient enhanced damage for quasi-brittle material. Int. J. Numer. Methods Eng. 1996, 39, 3391–3403. [Google Scholar] [CrossRef]
- Eringen, C.A.; Edelen, D.G.B. On nonlocal elasticity. Int. J. Eng. Sci. 1972, 10, 233–248. [Google Scholar] [CrossRef]
- Pijaudier-Cabot, G.; Bažant, Z.P. Nonlocal Damage Theory. J. Eng. Mech. 1987, 10, 1512–1533. [Google Scholar] [CrossRef]
- Bažant, Z.P. Imbrigate continuum and its variational derivation, Journal of the Engi-neering Mechanics Division. ASCE 1984, 110, 1693–1712. [Google Scholar]
- Tovo, R.; Livieri, P. An implicit gradient application to fatigue of complex structures. Eng. Fract. Mech. 2007, 75, 1804–1814. [Google Scholar] [CrossRef]
- El Haddad, M.H.; Topper, T.H.; Smith, K.N. Fatigue crack propagation of short cracks. ASME J. Eng. Mater. Technol. 1979, 101, 42–45. [Google Scholar] [CrossRef]
- Tovo, R.; Livieri, P. A numerical approach to fatigue assessment of spot weld joints. Fatigue Fract. Eng. Mater. Struct. 2010, 34, 32–45. [Google Scholar] [CrossRef]
- Radaj, D.; Sonsino, C.M.; Fricke, W. Fatigue Assessment of Welded Joints by Local, Approaches, 2nd ed.; Woodhead Publishing: Boca Raton, FL, USA; CRC Press: Cambridge, UK, 2006. [Google Scholar]
- Saelzer, J.; Berger, S.; Iovkov, I.; Zabel, A.; Biermann, D. Modelling of the friction in the chip formation zone depending on the rake face topography. Wear 2021, 477, 203802. [Google Scholar] [CrossRef]
- Karupannasamy, D.K.; de Rooij, M.B.; Schipper, D.J. Contact pressure-dependent friction characterization by using a single sheet metal compression test. Wear 2013, 308, 222–231. [Google Scholar] [CrossRef]
- Karupannasamy, D.; de Rooij, M.; Schipper, D. Multi-scale friction modelling for rough contacts under sliding conditions. Wear 2013, 308, 222–231. [Google Scholar] [CrossRef]
- Livieri, P. Numerical Analysis of Double Riveted Lap Joints. Lubricants 2023, 11, 396. [Google Scholar] [CrossRef]
- Cristofori, A.; Livieri, P.; Tovo, R. An application of the implicit gradient method to welded structures under multiaxial fatigue loadings. Int. J. Fatigue 2009, 31, 12–19. [Google Scholar] [CrossRef]
Specimen | Aluminium Alloy | Steel Sheet | Friction Coefficient |
---|---|---|---|
DSW-1 | A6N01 | SPC590 | 0.56 |
DSW-2 | A7003 | SPC590 | 0.45 |
DSW-3 | A6N01 | SPC980 | 0.42 |
DSW-4 | A7003 | SPC980 | 0.38 |
Material | Ultimate Tensile Strength (MPa) | Yield Strength (MPa) | Elongation (%) |
---|---|---|---|
A6N01 | 257 | 225 | 9.4 |
A7003 | 395 | 349 | 10.8 |
SPC590 | 590 | 444 | 24.8 |
SPC980 | 980 | 813 | 13.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Livieri, P.; Bortolan, M. Numerical Fatigue Analysis of Dissimilar Lap Joints Fabricated by Dimple Spot Welding for Automotive Application. Materials 2025, 18, 627. https://doi.org/10.3390/ma18030627
Livieri P, Bortolan M. Numerical Fatigue Analysis of Dissimilar Lap Joints Fabricated by Dimple Spot Welding for Automotive Application. Materials. 2025; 18(3):627. https://doi.org/10.3390/ma18030627
Chicago/Turabian StyleLivieri, Paolo, and Michele Bortolan. 2025. "Numerical Fatigue Analysis of Dissimilar Lap Joints Fabricated by Dimple Spot Welding for Automotive Application" Materials 18, no. 3: 627. https://doi.org/10.3390/ma18030627
APA StyleLivieri, P., & Bortolan, M. (2025). Numerical Fatigue Analysis of Dissimilar Lap Joints Fabricated by Dimple Spot Welding for Automotive Application. Materials, 18(3), 627. https://doi.org/10.3390/ma18030627