Scaffold Characteristics for Functional Hollow Organ Regeneration
Abstract
:1. Introduction
2. Cells
3. Environment
4. Biomaterials
- be biocompatible, meaning that it should not provoke any rejection, inflammation, immune responses or foreign body reactions.
- provide a 3D template for the cells to attach and to guide their growth.
- have a porous architecture with a high surface area for the maximum loading of cells, cell-surface interaction, tissue ingrowth, and transportation of nutrients and oxygen.
- be degradable under physiological conditions and the degradation rate should match the rate of tissue regeneration to sustain tissue functionality.
- be mechanically strong to withstand in vivo biological forces.
- support the cells in synthesizing tissue specific extracellular matrix components and growth factors required for healthy tissue growth.
- be sterilizable to avoid toxic contaminations without compromising any structural and mechanical properties.
- provide structural support for distinct cell layers, including an adequate surface for stable attachment of urothelial cells.
- give adequate biomechanical support to harbor a high density of smooth muscle cells on the exterior surface without inducing premature collapse of the hollow organ.
- serve as a barrier between luminal contents and the body cavity.
- support the formation of unidirectional muscle tissue in defined layers and allow for rapid innervation and vascularisation.
Natually derived scaffolds | Synthetic scaffolds |
eg. Bladder submucosa | eg. PGA |
+ Mainly collagen, naturally derived | + Absorbable |
+ Absorbable | + High porosity (up to 95%) |
+ Cell recognition sites | + Low variability |
+ Growth Factors | - Synthetic, no recognition sites |
- Low elasticity | |
- High variability |
4.1. Native Acellular Matrices
4.2. Synthetic Polymers
4.3. Composite Scaffold
5. Vascularisation and Innervation
6. Conclusions
Acknowledgements
References
- Metcalfe, A.D.; Ferguson, M.W. Bioengineering skin using mechanisms of regeneration and repair. Biomaterials 2007, 28, 5100–5113. [Google Scholar] [CrossRef] [PubMed]
- Macchiarini, P.; Jungebluth, P.; Go, T.; Asnaghi, M.A.; Rees, L.E.; Cogan, T.A.; Dodson, A.; Martorell, J.; Bellini, S.; Parnigotto, P.P.; Dickinson, S.C.; Hollander, A.P.; Mantero, S.; Conconi, M.T.; Birchall, M.A. Clinical transplantation of a tissue-engineered airway. Lancet 2008, 372, 2023–2030. [Google Scholar] [CrossRef] [PubMed]
- Brittberg, M.; Lindahl, A.; Nilsson, A.; Ohlsson, C.; Isaksson, O.; Peterson, L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 1994, 331, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Caldamone, A.A.; Diamond, D.A. Long-term results of the endoscopic correction of vesicoureteral reflux in children using autologous chondrocytes. J. Urol. 2001, 165, 2224–2227. [Google Scholar] [CrossRef] [PubMed]
- Bent, A.E.; Tutrone, R.T.; McLennan, M.T.; Lloyd, L.K.; Kennelly, M.J.; Badlani, G. Treatment of intrinsic sphincter deficiency using autologous ear chondrocytes as a bulking agent. Neurourol. Urodyn. 2001, 20, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Chancellor, M.B.; Yokoyama, T.; Tirney, S.; Mattes, C.E.; Ozawa, H.; Yoshimura, N.; de Groat, W.C.; Huard, J. Preliminary results of myoblast injection into the urethra and bladder wall: A possible method for the treatment of stress urinary incontinence and impaired detrusor contractility. Neurourol. Urodyn. 2000, 19, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Choi, R.S.; Vacanti, J.P. Preliminary studies of tissue-engineered intestine using isolated epithelial organoid units on tubular synthetic biodegradable scaffolds. Transplant. Proc. 1997, 29, 848–851. [Google Scholar] [CrossRef] [PubMed]
- Ansaloni, L.; Bonasoni, P.; Cambrini, P.; Catena, F.; De Cataldis, A.; Gagliardi, S.; Gazzotti, F.; Peruzzi, S.; Santini, D.; Taffurelli, M. Experimental evaluation of Surgisis as scaffold for neointestine regeneration in a rat model. Transplant. Proc. 2006, 38, 1844–1848. [Google Scholar] [CrossRef] [PubMed]
- Nakase, Y.; Nakamura, T.; Kin, S.; Nakashima, S.; Yoshikawa, T.; Kuriu, Y.; Miyagawa, K.; Sakakura, C.; Otsuji, E.; Ikada, Y.; Yamagishi, H.; Hagiwara, A. Endocrine cell and nerve regeneration in autologous in situ tissue-engineered small intestine. J. Surg. Res. 2007, 137, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Sudan, D. Advances in the nontransplant medical and surgical management of intestinal failure. Curr. Opin. Organ Transplant. 2009, 14, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.J.; Meng, J.; Oberpenning, F.; Atala, A. Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology 1998, 51, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Oberpenning, F.; Meng, J.; Yoo, J.J.; Atala, A. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat. Biotechnol. 1999, 17, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Atala, A.; Bauer, S.B.; Soker, S.; Yoo, J.J.; Retik, A.B. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 2006, 367, 1241–1246. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.C.; Milthorpe, B.K.; McFarland, C.D. Engineering thick tissues—the vascularisation problem. Eur. Cell Mater. 2007, 14, 1–18, discussion 18–19. [Google Scholar] [PubMed]
- Kudish, H.G. The use of polyvinyl sponge for experimental cystoplasty. J. Urol. 1957, 78, 232–235. [Google Scholar] [PubMed]
- Bono, A.V.; De Gresti, A. Partial substitution of the bladder wall with teflon tissue. (Preliminary and experimental note on the impermeability and tolerance of the prosthesis). Minerva Urol. 1966, 18, 43–47. [Google Scholar] [PubMed]
- Fujita, K. The use of resin-sprayed thin paper for urinary bladder regeneration. Invest. Urol. 1978, 15, 355–357. [Google Scholar] [PubMed]
- Cheresh, D.A.; Stupack, D.G. Regulation of angiogenesis: Apoptotic cues from the ECM. Oncogene 2008, 27, 6285–6298. [Google Scholar] [CrossRef] [PubMed]
- Schonherr, E.; Hausser, H.J. Extracellular matrix and cytokines: A functional unit. Dev. Immunol. 2000, 7, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Uebersax, L.; Merkle, H.P.; Meinel, L. Biopolymer-based growth factor delivery for tissue repair: From natural concepts to engineered systems. Tiss. Eng. Part B Rev. 2009, 15, 263–289. [Google Scholar] [CrossRef]
- Ghosh, K.; Ingber, D.E. Micromechanical control of cell and tissue development: Implications for tissue engineering. Adv. Drug Deliv. Rev. 2007, 59, 1306–1318. [Google Scholar] [CrossRef] [PubMed]
- Furth, M.E.; Atala, A.; Van Dyke, M.E. Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials 2007, 28, 5068–5073. [Google Scholar] [CrossRef] [PubMed]
- Luo, B.H.; Springer, T.A. Integrin structures and conformational signaling. Curr. Opin. Cell Biol. 2006, 18, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Takada, Y.; Ye, X.; Simon, S. The integrins. Genome Biol. 2007, 8, 215. [Google Scholar] [CrossRef] [PubMed]
- Banno, A.; Ginsberg, M.H. Integrin activation. Biochem. Soc. Trans. 2008, 36, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Moser, M.; Legate, K.R.; Zent, R.; Fassler, R. The tail of integrins, talin, and kindlins. Science 2009, 324, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Murugan, R.; Ramakrishna, S. Design strategies of tissue engineering scaffolds with controlled fiber orientation. Tiss. Eng. 2007, 13, 1845–1866. [Google Scholar] [CrossRef]
- Atala, A. Bioengineered tissues for urogenital repair in children. Pediatr Res 2008, 63, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.K.; Beierle, E.A. Animal models for intestinal tissue engineering. Biomaterials 2004, 25, 1675–1681. [Google Scholar] [CrossRef] [PubMed]
- Evans, G.S.; Flint, N.; Somers, A.S.; Eyden, B.; Potten, C.S. The development of a method for the preparation of rat intestinal epithelial cell primary cultures. J. Cell Sci. 1992, 101 (Pt 1), 219–231. [Google Scholar] [PubMed]
- Choi, R.S.; Riegler, M.; Pothoulakis, C.; Kim, B.S.; Mooney, D.; Vacanti, M.; Vacanti, J.P. Studies of brush border enzymes, basement membrane components, and electrophysiology of tissue-engineered neointestine. J. Pediatr. Surg. 1998, 33, 991–996, discussion 996–997, discussion 996–997. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Y.; Ludwikowski, B.; Hurst, R.; Frey, P. Expansion and long-term culture of differentiated normal rat urothelial cells in vitro. In Vitro Cell Dev. Biol. Anim. 2001, 37, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Atala, A. Bladder regeneration by tissue engineering. BJU Int. 2001, 88, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Ludwikowski, B.; Zhang, Y.Y.; Frey, P. The long-term culture of porcine urothelial cells and induction of urothelial stratification. BJU Int. 1999, 84, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Southgate, J.; Hutton, K.A.; Thomas, D.F.; Trejdosiewicz, L.K. Normal human urothelial cells in vitro: Proliferation and induction of stratification. Lab. Invest. 1994, 71, 583–594. [Google Scholar] [PubMed]
- Turner, A.M.; Subramaniam, R.; Thomas, D.F.; Southgate, J. Generation of a functional, differentiated porcine urothelial tissue in vitro. Eur. Urol. 2008, 54, 1423–1432. [Google Scholar] [CrossRef] [PubMed]
- Heath, C.A. Cells for tissue engineering. Trends Biotechnol. 2000, 18, 17–19. [Google Scholar] [CrossRef] [PubMed]
- Brivanlou, A.H.; Gage, F.H.; Jaenisch, R.; Jessell, T.; Melton, D.; Rossant, J. Stem cells. Setting standards for human embryonic stem cells. Science 2003, 300, 913–916. [Google Scholar] [CrossRef] [PubMed]
- Przyborski, S.A. Differentiation of human embryonic stem cells after transplantation in immune-deficient mice. Stem Cells 2005, 23, 1242–1250. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Lin, G.; Tan, Y.Q.; Zhou, D.; Deng, L.Y.; Cheng, D.H.; Luo, S.W.; Liu, T.C.; Zhou, X.Y.; Sun, Z.; Xiang, Y.; Chen, T.J.; Wen, J.F.; Lu, G.X. Tumor progression of culture-adapted human embryonic stem cells during long-term culture. Gene. Chromosome Cancer 2008, 47, 665–679. [Google Scholar] [CrossRef]
- De Coppi, P.; Callegari, A.; Chiavegato, A.; Gasparotto, L.; Piccoli, M.; Taiani, J.; Pozzobon, M.; Boldrin, L.; Okabe, M.; Cozzi, E.; Atala, A.; Gamba, P.; Sartore, S. Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells. J. Urol. 2007, 177, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Fauza, D. Amniotic fluid and placental stem cells. Best Pract. Res. Clin. Obstet. Gy. 2004, 18, 877–891. [Google Scholar] [CrossRef]
- Eberli, D.; Atala, A. Tissue engineering using adult stem cells. Meth. Enzymology 2006, 420, 287–302. [Google Scholar]
- Angele, P.; Kujat, R.; Nerlich, M.; Yoo, J.; Goldberg, V.; Johnstone, B. Engineering of osteochondral tissue with bone marrow mesenchymal progenitor cells in a derivatized hyaluronan-gelatin composite sponge. Tiss. Eng. 1999, 5, 545–554. [Google Scholar] [CrossRef]
- Pittenger, M.F.; Mackay, A.M.; Beck, S.C.; Jaiswal, R.K.; Douglas, R.; Mosca, J.D.; Moorman, M.A.; Simonetti, D.W.; Craig, S.; Marshak, D.R. Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Qu-Petersen, Z.; Cao, B.; Kimura, S.; Jankowski, R.; Cummins, J.; Usas, A.; Gates, C.; Robbins, P.; Wernig, A.; Huard, J. Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. J. Cell Biol. 2000, 150, 1085–1100. [Google Scholar] [CrossRef] [PubMed]
- Zuk, P.A.; Zhu, M.; Mizuno, H.; Huang, J.; Futrell, J.W.; Katz, A.J.; Benhaim, P.; Lorenz, H.P.; Hedrick, M.H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tiss. Eng. 2001, 7, 211–228. [Google Scholar] [CrossRef]
- Toma, J.G.; Akhavan, M.; Fernandes, K.J.; Barnabe-Heider, F.; Sadikot, A.; Kaplan, D.R.; Miller, F.D. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat. Cell Biol. 2001, 3, 778–784. [Google Scholar] [CrossRef] [PubMed]
- De Bari, C.; Dell'Accio, F.; Tylzanowski, P.; Luyten, F.P. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001, 44, 1928–1942. [Google Scholar] [CrossRef] [PubMed]
- Guan, K.; Nayernia, K.; Maier, L.S.; Wagner, S.; Dressel, R.; Lee, J.H.; Nolte, J.; Wolf, F.; Li, M.; Engel, W.; Hasenfuss, G. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 2006, 440, 1199–1203. [Google Scholar] [CrossRef] [PubMed]
- Kossack, N.; Meneses, J.; Shefi, S.; Nguyen, H.N.; Chavez, S.; Nicholas, C.; Gromoll, J.; Turek, P.J.; Reijo-Pera, R.A. Isolation and characterization of pluripotent human spermatogonial stem cell-derived cells. Stem Cells 2009, 27, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.Y.; Krivorov, N.P.; Rausei, V.; Thomas, L.; Frantzen, M.; Landsittel, D.; Kang, Y.M.; Chon, C.H.; Ng, C.S.; Fuchs, G.J. Bladder reconstitution with bone marrow derived stem cells seeded on small intestinal submucosa improves morphological and molecular composition. J. Urol. 2005, 174, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lin, H.K.; Frimberger, D.; Epstein, R.B.; Kropp, B.P. Growth of bone marrow stromal cells on small intestinal submucosa: An alternative cell source for tissue engineered bladder. BJU Int. 2005, 96, 1120–1125. [Google Scholar] [CrossRef] [PubMed]
- Frimberger, D.; Morales, N.; Gearhart, J.D.; Gearhart, J.P.; Lakshmanan, Y. Human embryoid body-derived stem cells in tissue engineering-enhanced migration in co-culture with bladder smooth muscle and urothelium. Urology 2006, 67, 1298–1303. [Google Scholar] [CrossRef] [PubMed]
- Oottamasathien, S.; Wang, Y.; Williams, K.; Franco, O.E.; Wills, M.L.; Thomas, J.C.; Saba, K.; Sharif-Afshar, A.R.; Makari, J.H.; Bhowmick, N.A.; DeMarco, R.T.; Hipkens, S.; Magnuson, M.; Brock, J.W., 3rd; Hayward, S.W.; Pope, J.C.T.; Matusik, R.J. Directed differentiation of embryonic stem cells into bladder tissue. Dev. Biol. 2007, 304, 556–566. [Google Scholar] [CrossRef] [PubMed]
- Jack, G.S.; Zhang, R.; Lee, M.; Xu, Y.; Wu, B.M.; Rodriguez, L.V. Urinary bladder smooth muscle engineered from adipose stem cells and a three dimensional synthetic composite. Biomaterials 2009, 30, 3259–3270. [Google Scholar] [CrossRef] [PubMed]
- Rocha, F.G.; Sundback, C.A.; Krebs, N.J.; Leach, J.K.; Mooney, D.J.; Ashley, S.W.; Vacanti, J.P.; Whang, E.E. The effect of sustained delivery of vascular endothelial growth factor on angiogenesis in tissue-engineered intestine. Biomaterials 2008, 29, 2884–2890. [Google Scholar] [CrossRef] [PubMed]
- Bacakova, L.; Filova, E.; Rypacek, F.; Svorcik, V.; Stary, V. Cell adhesion on artificial materials for tissue engineering. Physiol. Res. 2004, 53 (Suppl. 1), S35–S45. [Google Scholar] [PubMed]
- Pariente, J.L.; Kim, B.S.; Atala, A. In vitro biocompatibility evaluation of naturally derived and synthetic biomaterials using normal human bladder smooth muscle cells. J. Urol. 2002, 167, 1867–1871. [Google Scholar] [CrossRef] [PubMed]
- Scriven, S.D.; Trejdosiewicz, L.K.; Thomas, D.F.; Southgate, J. Urothelial cell transplantation using biodegradable synthetic scaffolds. J. Mater. Sci. Mater. Med. 2001, 12, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.L.; Brook-Allred, T.T.; Waddell, J.E.; White, J.; Werkmeister, J.A.; Ramshaw, J.A.; Bagli, D.J.; Woodhouse, K.A. Bladder acellular matrix as a substrate for studying in vitro bladder smooth muscle-urothelial cell interactions. Biomaterials 2005, 26, 529–543. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.Y.; Lim, G.J.; Kwon, T.G.; Kwak, E.K.; Kim, B.W.; Atala, A.; Yoo, J.J. Identification and characterization of bioactive factors in bladder submucosa matrix. Biomaterials 2007, 28, 4251–4256. [Google Scholar] [CrossRef] [PubMed]
- Dawson, R.A.; Goberdhan, N.J.; Freedlander, E.; MacNeil, S. Influence of extracellular matrix proteins on human keratinocyte attachment, proliferation and transfer to a dermal wound model. Burns 1996, 22, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Ashammakhi, N.; Rokkanen, P. Absorbable polyglycolide devices in trauma and bone surgery. Biomaterials 1997, 18, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Hodde, J. Naturally occurring scaffolds for soft tissue repair and regeneration. Tiss. Eng. 2002, 8, 295–308. [Google Scholar] [CrossRef]
- Daley, W.P.; Peters, S.B.; Larsen, M. Extracellular matrix dynamics in development and regenerative medicine. J. Cell Sci. 2008, 121, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, F.; van der Walle, C.F. Engineering biodegradable polyester particles with specific drug targeting and drug release properties. J. Pharm. Sci. 2008, 97, 71–87. [Google Scholar] [CrossRef] [PubMed]
- Hutmacher, D.W.; Schantz, J.T.; Lam, C.X.; Tan, K.C.; Lim, T.C. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J. Tiss. Eng. Regen. Med. 2007, 1, 245–260. [Google Scholar] [CrossRef]
- Ma, Z.; Mao, Z.; Gao, C. Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloid. Surf. B 2007, 60, 137–157. [Google Scholar] [CrossRef]
- Kropp, B.P.; Rippy, M.K.; Badylak, S.F.; Adams, M.C.; Keating, M.A.; Rink, R.C.; Thor, K.B. Regenerative urinary bladder augmentation using small intestinal submucosa: Urodynamic and histopathologic assessment in long-term canine bladder augmentations. J. Urol. 1996, 155, 2098–2104. [Google Scholar] [CrossRef] [PubMed]
- Olsen, L.B.S.; Busch, C.; Carlsten, J.; Eriksson, I. Urethral reconstruction with a new synthetic absorbable device. An experimental study. Scand J. Urol. Nephrol 1992, 26, 323–326. [Google Scholar] [CrossRef] [PubMed]
- Kropp, B.P.; Ludlow, J.K.; Spicer, D.; Rippy, M.K.; Badylak, S.F.; Adams, M.C.; Keating, M.A.; Rink, R.C.; Birhle, R.; Thor, K.B. Rabbit urethral regeneration using small intestinal submucosa onlay grafts. Urology 1998, 52, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Urita, Y.; Komuro, H.; Chen, G.; Shinya, M.; Kaneko, S.; Kaneko, M.; Ushida, T. Regeneration of the esophagus using gastric acellular matrix: An experimental study in a rat model. Pediatr. Surg. Int. 2007, 23, 21–26. [Google Scholar] [CrossRef] [PubMed]
- De Filippo, R.E.; Yoo, J.J.; Atala, A. Engineering of vaginal tissue in vivo. Tiss. Eng. 2003, 9, 301–306. [Google Scholar] [CrossRef]
- Amiel, G.E.; Komura, M.; Shapira, O.; Yoo, J.J.; Yazdani, S.; Berry, J.; Kaushal, S.; Bischoff, J.; Atala, A.; Soker, S. Engineering of blood vessels from acellular collagen matrices coated with human endothelial cells. Tiss. Eng. 2006, 12, 2355–2365. [Google Scholar] [CrossRef]
- Lee, J.Y.; Choo, J.E.; Choi, Y.S.; Lee, K.Y.; Min, D.S.; Pi, S.H.; Seol, Y.J.; Lee, S.J.; Jo, I.H.; Chung, C.P.; Park, Y.J. Characterization of the surface immobilized synthetic heparin binding domain derived from human fibroblast growth factor-2 and its effect on osteoblast differentiation. J. Biomed. Mater. Res. A 2007, 83, 970–979. [Google Scholar] [CrossRef] [PubMed]
- Southgate, J.; Cross, W.; Eardley, I.; Thomas, D.F.; Trejdosiewicz, L.K. Bladder reconstruction—from cells to materials. Proc. Inst. Mech. Eng. H 2003, 217, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Yoo, J.J.; Atala, A. Acellular collagen matrix as a possible "off the shelf" biomaterial for urethral repair. Urology 1999, 54, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Dahms, S.E.; Piechota, H.J.; Dahiya, R.; Lue, T.F.; Tanagho, E.A. Composition and biomechanical properties of the bladder acellular matrix graft: Comparative analysis in rat, pig and human. Br. J. Urol. 1998, 82, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, R.S.; Baskin, L.S.; Hayward, S.W.; Cunha, G.R. Regeneration of bladder urothelium, smooth muscle, blood vessels and nerves into an acellular tissue matrix. J. Urol. 1996, 156, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Badylak, S.F. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl. Immunol. 2004, 12, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Bolland, F.; Korossis, S.; Wilshaw, S.P.; Ingham, E.; Fisher, J.; Kearney, J.N.; Southgate, J. Development and characterisation of a full-thickness acellular porcine bladder matrix for tissue engineering. Biomaterials 2007, 28, 1061–1070. [Google Scholar] [CrossRef] [PubMed]
- Hori, Y.; Nakamura, T.; Kimura, D.; Kaino, K.; Kurokawa, Y.; Satomi, S.; Shimizu, Y. Experimental study on tissue engineering of the small intestine by mesenchymal stem cell seeding. J. Surg. Res. 2002, 102, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Chang, P.C.; Dunn, J.C. Evaluation of small intestinal submucosa as scaffolds for intestinal tissue engineering. J. Surg. Res. 2008, 147, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Probst, M.; Piechota, H.J.; Dahiya, R.; Tanagho, E.A. Homologous bladder augmentation in dog with the bladder acellular matrix graft. BJU Int. 2000, 85, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.P.; Barrieras, D.J.; Wilson, G.; Bagli, D.J.; McLorie, G.A.; Khoury, A.E.; Merguerian, P.A. Regeneration of functional bladder substitutes using large segment acellular matrix allografts in a porcine model. J. Urol. 2000, 164, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Frimberger, D.; Cheng, E.Y.; Lin, H.K.; Kropp, B.P. Challenges in a larger bladder replacement with cell-seeded and unseeded small intestinal submucosa grafts in a subtotal cystectomy model. BJU Int. 2006, 98, 1100–1105. [Google Scholar] [CrossRef] [PubMed]
- Kanematsu, A.; Yamamoto, S.; Noguchi, T.; Ozeki, M.; Tabata, Y.; Ogawa, O. Bladder regeneration by bladder acellular matrix combined with sustained release of exogenous growth factor. J. Urol. 2003, 170, 1633–1638. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.L.; Farhat, W.; Merguerian, P.A.; Wilson, G.J.; Khoury, A.E.; Woodhouse, K.A. 22 week assessment of bladder acellular matrix as a bladder augmentation material in a porcine model. Biomaterials 2002, 23, 2179–2190. [Google Scholar] [CrossRef] [PubMed]
- Kropp, B.P.; Cheng, E.Y.; Lin, H.K.; Zhang, Y. Reliable and reproducible bladder regeneration using unseeded distal small intestinal submucosa. J. Urol. 2004, 172, 1710–1713. [Google Scholar] [CrossRef] [PubMed]
- Baumert, H.; Simon, P.; Hekmati, M.; Fromont, G.; Levy, M.; Balaton, A.; Molinie, V.; Malavaud, B. Development of a seeded scaffold in the great omentum: Feasibility of an in vivo bioreactor for bladder tissue engineering. Eur. Urol. 2007, 52, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Harmon, J.W.; Wright, J.A.; Noel, J.; Cogan, M. Fate of Dacron prostheses in the small bowel of rabbits. Surg. Forum 1979, 30, 365–366. [Google Scholar] [PubMed]
- Watson, L.C.; Friedman, H.I.; Griffin, D.G.; Norton, L.W.; Mellick, P.W. Small bowel neomucosa. J. Surg. Res. 1980, 28, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Kaihara, S.; Kim, S.S.; Kim, B.S.; Mooney, D.; Tanaka, K.; Vacanti, J.P. Long-term follow-up of tissue-engineered intestine after anastomosis to native small bowel. Transplantation 2000, 69, 1927–1932. [Google Scholar] [CrossRef] [PubMed]
- Hutmacher, D.W. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000, 21, 2529–2543. [Google Scholar] [CrossRef] [PubMed]
- Freed, L.E.; Vunjak-Novakovic, G.; Biron, R.J.; Eagles, D.B.; Lesnoy, D.C.; Barlow, S.K.; Langer, R. Biodegradable polymer scaffolds for tissue engineering. Biotechnology 1994, 12, 689–693. [Google Scholar] [CrossRef] [PubMed]
- Mikos, A.G.; Lyman, M.D.; Freed, L.E.; Langer, R. Wetting of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams for tissue culture. Biomaterials 1994, 15, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Harris, L.D.; Kim, B.S.; Mooney, D.J. Open pore biodegradable matrices formed with gas foaming. J. Biomed. Mater. Res. 1998, 42, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Bini, T.B.; Gao, S.; Xu, X.; Wang, S.; Ramakrishna, S.; Leong, K.W. Peripheral nerve regeneration by microbraided poly(L-lactide-co-glycolide) biodegradable polymer fibers. J. Biomed. Mater. Res. A 2004, 68, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Zong, X.; Bien, H.; Chung, C.Y.; Yin, L.; Fang, D.; Hsiao, B.S.; Chu, B.; Entcheva, E. Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials 2005, 26, 5330–5338. [Google Scholar] [CrossRef] [PubMed]
- Peppas, N.A.; Langer, R. New challenges in biomaterials. Science 1994, 263, 1715–1720. [Google Scholar] [CrossRef] [PubMed]
- Danielsson, C.; Ruault, S.; Simonet, M.; Neuenschwander, P.; Frey, P. Polyesterurethane foam scaffold for smooth muscle cell tissue engineering. Biomaterials 2006, 27, 1410–1415. [Google Scholar] [CrossRef] [PubMed]
- Vacanti, J.P.; Langer, R. Tissue engineering: The design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 1999, 354 (Suppl. 1), SI32–SI34. [Google Scholar] [CrossRef] [PubMed]
- Bisson, I.; Hilborn, J.; Wurm, F.; Meyrat, B.; Frey, P. Human urothelial cells grown on collagen adsorbed to surface-modified polymers. Urology 2002, 60, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.S.; Nikolovski, J.; Bonadio, J.; Smiley, E.; Mooney, D.J. Engineered smooth muscle tissues: Regulating cell phenotype with the scaffold. Exp. Cell. Res. 1999, 251, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Murugan, R.; Ramakrishna, S. Nano-featured scaffolds for tissue engineering: A review of spinning methodologies. Tiss. Eng. 2006, 12, 435–447. [Google Scholar] [CrossRef]
- Xu, C.Y.; Inai, R.; Kotaki, M.; Ramakrishna, S. Aligned biodegradable nanofibrous structure: A potential scaffold for blood vessel engineering. Biomaterials 2004, 25, 877–886. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Kotaki, M.; Inai, R.; Ramakrishna, S. Potential of nanofiber matrix as tissue-engineering scaffolds. Tiss. Eng. 2005, 11, 101–109. [Google Scholar] [CrossRef]
- Yang, F.; Murugan, R.; Wang, S.; Ramakrishna, S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005, 26, 2603–2610. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.C.; Atkin, N.; Gunning, P.A.; Granville, N.; Wilson, K.; Wilson, D.; Southgate, J. Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies. Biomaterials 2006, 27, 3136–3146. [Google Scholar] [CrossRef] [PubMed]
- Eberli, D.; Freitas Filho, L.; Atala, A.; Yoo, J.J. Composite scaffolds for the engineering of hollow organs and tissues. Methods 2009, 47, 109–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakanishi, Y.; Chen, G.; Komuro, H.; Ushida, T.; Kaneko, S.; Tateishi, T.; Kaneko, M. Tissue-engineered urinary bladder wall using PLGA mesh-collagen hybrid scaffolds: A comparison study of collagen sponge and gel as a scaffold. J. Pediatr. Surg. 2003, 38, 1781–1784. [Google Scholar] [CrossRef] [PubMed]
- Pope, J.C.T.; Davis, M.M.; Smith, E.R. Jr.; Walsh, M.J.; Ellison, P.K.; Rink, R.C.; Kropp, B.P. The ontogeny of canine small intestinal submucosa regenerated bladder. J. Urol. 1997, 158, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, N.; Davis-Smyth, T. The biology of vascular endothelial growth factor. Endocr. Rev. 1997, 18, 4–25. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, M.; Shirai, M.; Shiina, H.; Shirai, M.; Tanaka, Y.; Fujime, M.; Okuyama, A.; Dahiya, R. Loss of anti-apoptotic genes in aging rat crura. J. Urol. 2002, 168, 2296–2300. [Google Scholar] [CrossRef] [PubMed]
- Gerber, H.P.; Dixit, V.; Ferrara, N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J. Biol. Chem. 1998, 273, 13313–13316. [Google Scholar] [CrossRef] [PubMed]
- Kanematsu, A.; Yamamoto, S.; Ozeki, M.; Noguchi, T.; Kanatani, I.; Ogawa, O.; Tabata, Y. Collagenous matrices as release carriers of exogenous growth factors. Biomaterials 2004, 25, 4513–4520. [Google Scholar] [CrossRef] [PubMed]
- Nomi, M.; Atala, A.; Coppi, P.D.; Soker, S. Principals of neovascularization for tissue engineering. Mol. Aspects Med. 2002, 23, 463–483. [Google Scholar] [CrossRef] [PubMed]
- Schultheiss, D.; Gabouev, A.I.; Cebotari, S.; Tudorache, I.; Walles, T.; Schlote, N.; Wefer, J.; Kaufmann, P.M.; Haverich, A.; Jonas, U.; Stief, C.G.; Mertsching, H. Biological vascularized matrix for bladder tissue engineering: Matrix preparation, reseeding technique and short-term implantation in a porcine model. J. Urol. 2005, 173, 276–280. [Google Scholar] [CrossRef] [PubMed]
- McConnell, M.P.; Dhar, S.; Naran, S.; Nguyen, T.; Bradshaw, R.A.; Evans, G.R. In vivo induction and delivery of nerve growth factor, using HEK-293 cells. Tiss. Eng. 2004, 10, 1492–1501. [Google Scholar] [CrossRef]
- Levenberg, S.; Burdick, J.A.; Kraehenbuehl, T.; Langer, R. Neurotrophin-induced differentiation of human embryonic stem cells on three-dimensional polymeric scaffolds. Tiss. Eng. 2005, 11, 506–512. [Google Scholar] [CrossRef]
- Sondell, M.; Sundler, F.; Kanje, M. Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor. Eur. J. Neurosci. 2000, 12, 4243–4254. [Google Scholar] [CrossRef] [PubMed]
- Mitsui, T.; Shumsky, J.S.; Lepore, A.C.; Murray, M.; Fischer, I. Transplantation of neuronal and glial restricted precursors into contused spinal cord improves bladder and motor functions, decreases thermal hypersensitivity, and modifies intraspinal circuitry. J. Neurosci. 2005, 25, 9624–9636. [Google Scholar] [CrossRef] [PubMed]
- Kingham, P.J.; Terenghi, G. Bioengineered nerve regeneration and muscle reinnervation. J. Anat. 2006, 209, 511–526. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Chancellor, M.B.; Goins, W.F.; Phelan, M.W.; Glorioso, J.C.; de Groat, W.C.; Yoshimura, N. Gene therapy using replication-defective herpes simplex virus vectors expressing nerve growth factor in a rat model of diabetic cystopathy. Diabetes 2004, 53, 2723–2730. [Google Scholar] [CrossRef] [PubMed]
- Seki, S.; Sasaki, K.; Fraser, M.O.; Igawa, Y.; Nishizawa, O.; Chancellor, M.B.; de Groat, W.C.; Yoshimura, N. Immunoneutralization of nerve growth factor in lumbosacral spinal cord reduces bladder hyperreflexia in spinal cord injured rats. J. Urol. 2002, 168, 2269–2274. [Google Scholar] [CrossRef] [PubMed]
- Hirata, A.; Masaki, T.; Motoyoshi, K.; Kamakura, K. Intrathecal administration of nerve growth factor delays GAP 43 expression and early phase regeneration of adult rat peripheral nerve. Brain Res. 2002, 944, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Henderson, C.E.; Phillips, H.S.; Pollock, R.A.; Davies, A.M.; Lemeulle, C.; Armanini, M.; Simmons, L.; Moffet, B.; Vandlen, R.A.; Simpson, L.C.; et al. GDNF: A potent survival factor for motoneurons present in peripheral nerve and muscle. Science 1994, 266, 1062–1064. [Google Scholar] [CrossRef] [PubMed]
- Piquilloud, G.; Christen, T.; Pfister, L.A.; Gander, B.; Papaloizos, M.Y. Variations in glial cell line-derived neurotrophic factor release from biodegradable nerve conduits modify the rate of functional motor recovery after rat primary nerve repairs. Eur. J. Neurosci. 2007, 26, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Kashiba, H.; Hyon, B.; Senba, E. Glial cell line-derived neurotrophic factor and nerve growth factor receptor mRNAs are expressed in distinct subgroups of dorsal root ganglion neurons and are differentially regulated by peripheral axotomy in the rat. Neurosci. Lett. 1998, 252, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Madduri, S.; Papaloizos, M.; Gander, B. Synergistic effect of GDNF and NGF on axonal branching and elongation in vitro. Neurosci. Res. 2009, 65, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Kikuno, N.; Kawamoto, K.; Hirata, H.; Vejdani, K.; Kawakami, K.; Fandel, T.; Nunes, L.; Urakami, S.; Shiina, H.; Igawa, M.; Tanagho, E.; Dahiya, R. Nerve growth factor combined with vascular endothelial growth factor enhances regeneration of bladder acellular matrix graft in spinal cord injury-induced neurogenic rat bladder. BJU Int. 2009, 103, 1424–1428. [Google Scholar] [CrossRef] [PubMed]
- Corey, J.M.; Lin, D.Y.; Mycek, K.B.; Chen, Q.; Samuel, S.; Feldman, E.L.; Martin, D.C. Aligned electrospun nanofibers specify the direction of dorsal root ganglia neurite growth. J. Biomed. Mater. Res. A 2007, 83A, 636–645. [Google Scholar] [CrossRef] [PubMed]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Horst, M.; Madduri, S.; Gobet, R.; Sulser, T.; Hall, H.; Eberli, D. Scaffold Characteristics for Functional Hollow Organ Regeneration. Materials 2010, 3, 241-263. https://doi.org/10.3390/ma3010241
Horst M, Madduri S, Gobet R, Sulser T, Hall H, Eberli D. Scaffold Characteristics for Functional Hollow Organ Regeneration. Materials. 2010; 3(1):241-263. https://doi.org/10.3390/ma3010241
Chicago/Turabian StyleHorst, Maya, Srinivas Madduri, Rita Gobet, Tullio Sulser, Heike Hall, and Daniel Eberli. 2010. "Scaffold Characteristics for Functional Hollow Organ Regeneration" Materials 3, no. 1: 241-263. https://doi.org/10.3390/ma3010241
APA StyleHorst, M., Madduri, S., Gobet, R., Sulser, T., Hall, H., & Eberli, D. (2010). Scaffold Characteristics for Functional Hollow Organ Regeneration. Materials, 3(1), 241-263. https://doi.org/10.3390/ma3010241