Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid Devices
Abstract
:1. Introduction
2. Luminescent Centers in ZnO
Emission color (nm) | Proposed deep level transition |
---|---|
Violet | Zni to V.B. [3] |
Blue | Zni to VZn or C.B. to VZn [3,70] |
Green | C.B. to VO, or to VZn, or C.B. to both VO and VZn [67,32,33,34] |
Yellow | C.B. to Li, or C.B. to Oi [9,35,36,37] |
Orange | C.B. to Oi or Zni to Oi [3] |
Red | Lattice disorder along the c-axis (i.e. due to Zni) [41] |
3. Results and Discussion
3.1. n-ZnO nanorods/4H-p-SiC LEDs
3.2. n-ZnO nanotubes/p-GaN LEDs
3.3. n-ZnO nanorods/p-polymer hybrid LEDs
3.4. n-ZnO nanorods and external p-type electrodes
4. Experimental Section
5. Conclusions
References and Notes
- Bunn, C.W. The lattice dimensions of zinc oxide. Proc. Phys. Soc. London 1935, 47, 835–842. [Google Scholar] [CrossRef]
- Willander, M.; Nur, O.; Zhao, Q.X.; Yang, L.L.; Lorenz, M.; Cao, B.Q.; Zuniga Perez, J.; Czekalla, C.; Zimmermann, G.; Grundmann, M.; Bakin, A.; Behrends, A.; Al-Suleiman, M.; Al-Shaer, A.; Che Mofor, A.; Postels, B.; Waag, A.; Boukos, N.; Travlos, A.; Kwack, H.S.; Guinard, J.; Le Si Dang, D. Topical review: Zinc oxide nanorods based photonic devices: Recent progress in growth, light emitting diodes and lasers. Nanotechnology 2009, 20, 332001. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.A.; Kim, Y.Y.; Kim, D.C.; Mohanta, S.K.; Cho, H.K. A comparative analysis of deep level emission in ZnO layers deposited by various methods. J. Appl. Phys. 2009, 105, 013502. [Google Scholar] [CrossRef]
- Liu, W.; Gu, L.S.; Ye, D.L.; Zhu, S.M.; Liu, S.M.; Zhou, X.; Zhang, R.; Shi, Y.; Hang, Y.; Zhang, C.L. Blue-yellow ZnO homo-structural light emitting diode realized by metal organic chemical vapour deposition technique. Appl. Phys Lett. 2006, 88, 092101. [Google Scholar] [CrossRef]
- Gao, P.X.; Ding, Y.; Wang, Z.L. Crystallographic orientation aligned ZnO nanorods grown by Tin catalyst. Nano. Lett. 2003, 3, 1315–1320. [Google Scholar] [CrossRef]
- Klingshirn, C. Review article: ZnO: From basics towards applications. Phys. Stat. Sol. B 2007, 244, 3027–3073. [Google Scholar] [CrossRef]
- Klingshirn, C.; Mollwo, E. Light scattering experiments with heavily Li-doped ZnO crystal. Zeitschrift fur Physik A 1972, 254, 437–446. [Google Scholar] [CrossRef]
- Lander, J.J. Reactions of Lithium as a donor and an acceptor in ZnO. J. Phys. Chem. 1960, 15, 324–334. [Google Scholar]
- Zwingel, D. Trapping and recombination processes in the thermoluminscence of Li-doped ZnO single crystal. J. Lumin. 1972, 5, 385–405. [Google Scholar] [CrossRef]
- Look, D.C.; Claflin, B. P-type doping and devices based on ZnO. Phys. Stat. Sol. B 2004, 241, 624–630. [Google Scholar] [CrossRef]
- Özgür, Ü.; Alivov, Ya.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Dogan, S.; Avrutin, A.; Cho, S-J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301–103. [Google Scholar] [CrossRef]
- Gao, P.X.; Wang, Z.L. High-yield synthesis of single crystal nano-springs of ZnO. Small 2005, 1, 945–949. [Google Scholar] [CrossRef] [PubMed]
- Fuller, M.L. Twinning in zinc oxide. J. Appl. Phys. 1944, 15, 164–170. [Google Scholar] [CrossRef]
- Janotti, A.; van de Walle, C.G. Native point defects in ZnO. Phys. Rev. B 2007, 76, 165202–165222. [Google Scholar] [CrossRef]
- van de Walle, C.G.; Neugebauer, J. First principle calculations for defects and impurities: applications to III-nitrides. J. Appl. Phys. 2004, 95, 3851–3879. [Google Scholar] [CrossRef]
- Mooney, P.M. Identification of Defects in Semiconductors in Semiconductors and Semimetals; Academic press: San Diego, CA, USA, 1999; Volume 51B, pp. 93–152. [Google Scholar]
- Look, D.C.; Hemsky, J.W.; Sizelove, J.R. Residual native shallow donors in ZnO. Phys. Rev. Lett. 1999, 82, 2552–2555. [Google Scholar] [CrossRef]
- Kröger, F.A. The Chemistry of Imperfect Crystals; North Holland press: Amsterdam, The Netherland, 1964. [Google Scholar]
- Tuomisto, F.; Saarinen, K.; Look, D.C.; Farlow, G.C. Introduction and recovery of point defects in electron irradiated ZnO. Phys. Rev. B 2005, 72, 085206–085211. [Google Scholar] [CrossRef]
- Tuomisto, F.; Saarinen, K.; Look, D.C. Irradiation induced defects in ZnO studied by positron annihilation spectroscopy. Phys. Stat. Sol. C 2004, 201, 2219–2224. [Google Scholar] [CrossRef]
- Look, D.C.; Farlow, G.C.; Reunchan, P.; Limpijumnong, S.; Zhang, S.B.; Nordlund, K. Evidence of native defect donors in n-type ZnO. Phys. Rev. Lett. 2005, 95, 225502. [Google Scholar] [CrossRef] [PubMed]
- Kröger, F.A.; Vink, H.J. The origin of florescence in sled activated ZnS, CdS, and ZnO. J. Chem. Phys. 1954, 22, 250–252. [Google Scholar] [CrossRef]
- Kohan, A.F.; Ceder, G.; Morgan, D.; van de Walle, C.G. First principles study of native point defects in ZnO. Phys. Rev. B 2000, 22, 15019–15027. [Google Scholar] [CrossRef]
- Oba, F.; Nishitani, S.R.; Isotani, S.; Adachi, H.; Tanaka, I. Energetics of native point defects in ZnO. J. Appl. Phys. 2001, 90, 824–828. [Google Scholar] [CrossRef] [Green Version]
- van de Walle, C.G. Hydrogen as a doping cause n ZnO. Phys. Rev. Lett. 2000, 85, 1012–1015. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, D.C.; Look, D.C.; Jogai, B.; Morkoc, H. Similarities in the band edge and deep-center photoluminescence mechanisms in GaN and ZnO. Sol. Stat. Comm. 1997, 101, 643–646. [Google Scholar] [CrossRef]
- Liu, M.; Kiati, A.H.; Mascher, P. Point defects and luminescence centers in ZnO and ZnO doped with manganese. J. Lumin. 1992, 54, 35–42. [Google Scholar] [CrossRef]
- Bylander, E.G. Surface effects on low energy cathodoluminescence of ZnO. J. Appl. Phys. 1978, 49, 1188–1195. [Google Scholar] [CrossRef]
- Kassai, P.H. Electron spin resonance studies of donors in ZnO. Phys. Rev. 1963, 130, 989–995. [Google Scholar] [CrossRef]
- Studenikin, A.; Golego, N.; Cocivera, M. Fabrication of green and orange photoluminescence, undoped ZnO films by spray pyrolsis. J. Appl. Phys. 1998, 84, 2287–2294. [Google Scholar] [CrossRef]
- Yamauchi, S.; Goto, Y.; Hariu, T. Photoluminescence studies of un-doped and nitrogen-doped ZnO layers grown by plasma assisted epitaxy. J. Cryst. Growth 2004, 260, 1–6. [Google Scholar] [CrossRef]
- Zhao, Q.X.; Klason, P.; Willander, M.; Zhong, H.M.; Lu, W.; Yang, J.H. Deep level emissions influence by O and Zn implantation. Appl. Phys. Lett. 2005, 87, 211912:1–211912:3. [Google Scholar]
- Børseth, T.M.; Svensson, B.G.; Kuznetsov, A.Y.; Klason, P.; Zhao, Q.X.; Willander, M. Identification of zinc and oxygen vacancy optical signals in ZnO. Appl. Phys. Lett. 2006, 89, 262112. [Google Scholar] [CrossRef]
- Klason, P.; Børseth, T.M.; Zhao, Q.X.; Svensson, B.G.; Kuznetsov, A.Y.; Willander, M. Temperature dependence and decay times of zinc and oxygen vacancies related photoluminescence in ZnO. Sol. Stat. Commun. 2008, 145, 321–326. [Google Scholar] [CrossRef]
- Schirmer, O.F.; Zwingel, D. The yellow luminescence of ZnO. Sol. Stat. Commun. 1970, 8, 1559–1563. [Google Scholar] [CrossRef]
- Liu, M.; Kitai, A.H.; Mascher, P. Point defects and luminescence centers in zinc oxide and zinc oxide doped with manganese. J. Lumin. 1992, 54, 35–42. [Google Scholar] [CrossRef]
- Wu, X.L.; Siu, G.G.; Fu, C.L.; Ong, H.C. Photoluminescence and cathodoluminescence studies of stochiometric and oxygen deficiency in ZnO. Appl. Phys. Lett. 2001, 78, 2285–2287. [Google Scholar] [CrossRef]
- Li, D.; Leung, Y.H.; Djurisic, A.B.; Liu, Z.T.; Xie, M.H.; Shi, S.L.; Xu, S.J. Different origin of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods. Appl. Phys. Lett. 2004, 85, 1601–1603. [Google Scholar] [CrossRef] [Green Version]
- Tam, K.H.; Cheung, C.K.; Leung, Y.H.; Djurisic, A.B.; Ling, C.C.; Beling, C.D.; Fung, S.; Kwok, W.M.; Phillips, D.L.; Ding, L.; Ge, W.K. Defects in ZnO prepared by the hydrothermal method. J. Phys. Chem. 2006, 110, 20865–20871. [Google Scholar] [CrossRef]
- Greene, L.E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J.; Zhang, Y.; Saykally, R.J.; Yang, P. Low temperature wafer-scale production of ZnO nanowires arrays. Angew. Chem. Int. Ed. 2003, 42, 3031–3034. [Google Scholar] [CrossRef]
- Gomi, M.; Oohira, N.; Ozaki, K.; Koyano, M. Photoluminescence and structural properties of precipitated ZnO fine particles. Jpn. J. Appl. Phys. 2003, 42, 481–485. [Google Scholar] [CrossRef]
- Djurisic, A.B.; Leung, Y.H.; Tam, K.H.; Hsu, Y.F.; Ding, L.; Ge, W.K.; Zhong, C.; Wong, K.S.; Chan, W.K.; Tam, H.L.; Cheah, K.W.; Kwok, W.M.; Phillips, D.L. Defect emissions in ZnO nanostructures. Nanotechnology 2007, 18, 095702. [Google Scholar] [CrossRef]
- Lima, S.A.M.; Sigoli, F.A.; Jafelicci, M.; Davolos, M.R. Luminescent properties of lattice defect correlation in zinc oxide. Int. J. Inorg. Mater. 2001, 3, 749–754. [Google Scholar] [CrossRef]
- Nikitenko, V. Optical and Spectroscopy of Point Defects in Zinc Oxide; Springer: Dordrecht, The Netherland, 2005; p. 69. [Google Scholar]
- Allen, M.W.; Durbin, S.M. Influence of the oxygen vacancies on Schottky contacts to ZnO. Appl. Phys. Lett. 2008, 92, 12110. [Google Scholar] [CrossRef]
- Quan, D.T.; Hbib, H. High barrier height Au/InP Schottky contact with POXNYHZ interfacial layer. Solid State Electron 1993, 36, 339–344. [Google Scholar] [CrossRef]
- Ye, J.D.; Gu, S.L.; Zhu, S.M.; Liu, W.; Liu, S.M.; Zhang, R.; Shi, Y.; Zheng, Y.D. Blue yellow homo-structural light emitting diodes realized by metal organic chemical vapour deposition technique. Appl. Phys. Lett. 2006, 88, 182112. [Google Scholar] [CrossRef]
- Reddy, N.K.; Ahsanulhaq, Q.; Kim, J.H.; Hahn, Y.B. Well aligned ZnO for devices: Synthesis and characterization of ZnO nanorods and n-ZnO/p-Si heterojunction diodes. Europhys. Lett. 2008, 81, 3800. [Google Scholar]
- Chen, D.X.; Ling, C.C.; Fung, S.; Beling, C.D.; Mei, Y.F.; Fu, R.K.F.; Siu, G.G.; Chu, Paul K. Current transport studies of n-ZnO/p-Si heterostructures grown by plasma emission ion implantation deposition. Appl. Phys. Lett. 2006, 88, 132104. [Google Scholar] [CrossRef]
- Lampert, M.A.; Mark, P. Current Injection in Solids; Academic press: New York, NY, USA, 1970; p. 59. [Google Scholar]
- Mott, N.F.; Gurney, R.W. Electronic Processes in Ionic Crystals; Oxford University press: Oxford, England, 1940; p. 141. [Google Scholar]
- Bylander, E.G. Surface effects on the low energy cathodoluminescence of ZnO. J. Appl. Phys. 1978, 49, 1188–1195. [Google Scholar] [CrossRef]
- Zeng, H.; Li, Z.; Cai, W.; Liu, P. Strong localization effect in temperature dependence of violet blue shift emission from ZnO nano-shell. J. Appl. Phys. 2007, 102, 104307. [Google Scholar] [CrossRef]
- Djurisic, A.B.; Leung, Y.H.; Tam, K.H.; Ding, L.; Ge, W.K.; Chen, H.Y.; Gwo, S. Green yellow and orange defect emission from ZnO nanostructures: Influence of excitation wavelength. Appl. Phys. Lett. 2006, 88, 103107. [Google Scholar] [CrossRef]
- Leiter, F.; Alves, H.; Pfisterer, D.; Romanov, N.G.; Hofmann, D.M.; Meyer, B.K. Oxygen vacancies in ZnO. Physica B 2003, 340, 201–204. [Google Scholar] [CrossRef]
- Lin, B.; Fu, Z.; Jia, Y. Green luminescence centers in un-doped ZnO film deposited on Silicon substrate. Appl. Phys. Lett. 2001, 79, 943–945. [Google Scholar] [CrossRef]
- Djurisic, A.B.; Leung, Y.H. Optical properties of ZnO nanostructures. Small 2006, 2, 944–961. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.S.; Sun, Y.M.; Shi, C.S.; Xu, F.Q.; Pan, H.B. The electronic structure and spectral properties of ZnO and its defects. Nucl. Instrum. Methods B 2003, 199, 286–290. [Google Scholar] [CrossRef]
- Mattila, J.; Nieminen, R.M. Point defects complexes and broad band luminescence in GaN and AlN. Phys. Rev. B 1997, 55, 9571–9576. [Google Scholar] [CrossRef]
- Everhart, T.E.; Hoff, P.H. Determination of kilovolt electron energy dissipation. J. Appl. Phys. 1971, 42, 5837–5846. [Google Scholar] [CrossRef]
- Kanaya, K.; Okayama, S. Penetration and energy loss of electrons in solids. J. Phys. D 1972, 5, 43–58. [Google Scholar] [CrossRef]
- Dierre, B.; Yuan, X.L.; Ohashi, N.; Sekiguchi, T. Effect of specimen preparation on the cathodoluminescence properties of ZnO nano-particles. J. Appl. Phys. 2008, 103, 083551. [Google Scholar] [CrossRef]
- Yoshikawa, H.; Adachi, S. Jpn. J. Appl. Phys. 1997, 36, 6237. [CrossRef]
- Zhiyan, X.; Morihro, O.; Masayoshi, I.; Tadashi, I.; Gui, H.; Yoichiro, N.; Toru, A.; Hidenori, M. Cathodoluminescence properties of tower like ZnO prepared by thermal oxidation. J. Surf. Sci. Nanotech. 2009, 7, 358–361. [Google Scholar] [CrossRef]
- Young, M.O.; Kyung, M.L.; Kyung, P.H.; Yongsun, K.; Ahn, Y.H.; Ji-Yong, P.; Soonil, L. Correlating luminescence from individual ZnO nanostructures by electronic transport characteristics. Nano Lett. 2007, 7, 3681–3685. [Google Scholar] [CrossRef]
- Chien-Lin, K.; Ruey-Chi, W.; Jow-Lay, H.; Chuan-Pu, L.; Yi-Feng, L.; Cheng-Yu, W.; Hung-Chin, C. ZnO with two spatially distinct light emissions. Nanotechnology 2008, 19, 285703. [Google Scholar] [CrossRef] [PubMed]
- Vanheusden, K.; Seager, C.H.; Warren, W.L.; Tallant, D.R.; Voigt, J.A. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl. Phys. Lett. 1996, 15, 403–405. [Google Scholar] [CrossRef]
- Israr, M.Q.; Sadaf, J.R.; Yang, L.L.; Nur, O.; Willander, M.; Palisaitis, J.; Persson, P.O.Å. Trimming of aqueous chemically grown ZnO nanotubes and their comparative optical properties. Appl. Phys. Lett. 2009, 95, 073114. [Google Scholar] [CrossRef]
- Vayssieres, L.; Keis, K.; Hagfeldt, A.; Lindquist, S.E. Three dimensional array of highly oriented ZnO micro-tubes. Chem. Mater. 2001, 13, 4395–4398. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, Y.; Xu, D.; Tan, Y.; Liu, S. Blue luminescent centers in ZnO deposited on Si substrates. Optical Mater. 2004, 26, 239–242. [Google Scholar] [CrossRef]
- Alivov, Y.I.; van Nordstrand, J.E.; Look, D.C.; Chukichev, M.V.; Ateav, B.M. Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light emitting diodes. Appl. Phys. Lett. 2003, 83, 2943–2945. [Google Scholar] [CrossRef]
- Reshchikov, M.A.; Yi, G.-C.; Wessels, B.W. Behavior of 2.8- and 3.2 eV photoluminescence bands in Mg-doped GaN at different temperatures and excitation densities. Phys. Rev. B 1999, 59, 13176–13183. [Google Scholar] [CrossRef]
- Nadarajah, A.; Word, R.C.; Meiss, J.; Knenkamp, R. Flexible inorganic nanowires light emitting diode. Nano Lett. 2008, 8, 534–537. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Xu, Z.; Qian, L.; Tao, D.L.; Teng, F.; Xu, X.R. Influence of ZnO nanorods on the luminescence properties of the fluorescent dye-doped polymer nano-composite. Opt. Mater. 2006, 29, 216–219. [Google Scholar] [CrossRef]
- Wadeasa, A.; Beegum, S.L.; Raja, S.; Nur, O.; Willander, M. The demonstration of hybrid n-ZnO nanorod/p-polymer heterojunction light emitting diodes on glass substrate. Appl. Phys. A-Mat. Sci. Process. 2009, 95, 807–812. [Google Scholar] [CrossRef]
- Wadeasa, A.; Nur, O.; Willander, M. The effect of the interlayer design on the electroluminescence and electrical properties of n-ZnO/p-type blended polymer hybrid light emitting diodes. Nanotechnology 2009, 20, 065710. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Xu, Z.; Zhao, S.; Li, Y.; Zhang, F.; Song, L.; Wang, Y.; Xu, X. Organic-inorganic hetero-structure for enhanced electroluminescence. Solid State Commun. 2007, 142, 417–420. [Google Scholar] [CrossRef]
- Willander, M.; Nur, O.; Bano, N.; Sultana, K. Zinc oxide nanorods-based heterostructures on solid and soft substrates for white light emitting diodes applications. New J. Phys. 2009, 11, 125020. [Google Scholar] [CrossRef]
- Wagner, R.S.; Ellis, W.C. Vapour liquid solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90. [Google Scholar] [CrossRef]
- Huang, M.H.; Wu, Y.Y.; Feick, H.; Tran, H.; Weber, E.; Yang, P.D. Catalytic growth of ZnO nanowires by vapour transport. Adv. Mater. 2001, 13, 113–116. [Google Scholar] [CrossRef]
- Zhao, Q.X.; Klason, P.; Willander, M. Growth of ZnO nanostructure by vapour liquid solid method. Appl. Phys. A 2007, 88, 27–30. [Google Scholar] [CrossRef]
- Vayssieres, L.; Kies, K.; Lindquist, S.-E.; Hagfeldt, A. Purpose built anisotropic metal oxide material: 3D highly oriented microrod arrays of ZnO. J. Phys. Chem. B 2001, 105, 3350–3352. [Google Scholar] [CrossRef]
- Yang, L.L.; Zhao, Q.X.; Willander, M.; Jang, J.H. Effective way to control the size of well aligned ZnO nanorods with two step chemical path deposition. J. Crys. Grow. 2009, 311, 1046–1050. [Google Scholar] [CrossRef]
- Yang, L.L.; Zhao, Q.X.; Willander, M.; Jang, J.H.; Ivanov, I. Annealing effects on optical properties of low temperature grown ZnO nanorods. J. Appl. Phys. 2009, 105, 053503. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Willander, M.; Nur, O.; Sadaf, J.R.; Qadir, M.I.; Zaman, S.; Zainelabdin, A.; Bano, N.; Hussain, I. Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid Devices. Materials 2010, 3, 2643-2667. https://doi.org/10.3390/ma3042643
Willander M, Nur O, Sadaf JR, Qadir MI, Zaman S, Zainelabdin A, Bano N, Hussain I. Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid Devices. Materials. 2010; 3(4):2643-2667. https://doi.org/10.3390/ma3042643
Chicago/Turabian StyleWillander, Magnus, Omer Nur, Jamil Rana Sadaf, Muhammad Israr Qadir, Saima Zaman, Ahmed Zainelabdin, Nargis Bano, and Ijaz Hussain. 2010. "Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid Devices" Materials 3, no. 4: 2643-2667. https://doi.org/10.3390/ma3042643
APA StyleWillander, M., Nur, O., Sadaf, J. R., Qadir, M. I., Zaman, S., Zainelabdin, A., Bano, N., & Hussain, I. (2010). Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid Devices. Materials, 3(4), 2643-2667. https://doi.org/10.3390/ma3042643