The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications
Abstract
:1. Introduction
2. Hydrogen Storage Alloys for NiMH Battery Negative Electrodes
Alloy system | Composition | MS (memu·g−1) | H1/2 (kOe) | I0 (mA·g−1) | D (×10−11 cm2·s−1) | Reference |
---|---|---|---|---|---|---|
AB2 | Ti12Zr21.5Ni36.2V9.5Cr4.5Mn13.6Sn0.3Co2Al0.4 | 33 | 0.162 | 32.1 | 9.7 | [23] |
AB5 | La10.5Ce4.3Pr0.5Nd1.4Ni60.0Co12.7Mn5.9Al4.7 | 434 | 0.173 | 43.2 | 25.5 | [23] |
A2B7 | La16.3Mg7.0Ni65.1Co11.6 | 369 | 0.125 | 41.0 | 30.8 | [23] |
A2B7 | Nd18.8Mg2.5Ni65.1Al13.6 | 132 | 0.171 | 22.7 | 11.4 | [23] |
A2B7 | La3.8Pr7.7Nd7.7Mg4.0Ni72.1Al4.7 | 314 | 0.128 | 51.5 | 31.9 | This work |
A2B7 | Nd18.4Zr0.2Mg3.6Ni74.1Co0.1Al3.5 | 679 | 0.102 | 52.5 | 64 | [24] |
Zr-A2B7 | Zr2Ni7 | 213 | 0.281 | 22.3 | 41 | This work, [25] |
Zr-AB5 | ZrNi4.5 | 2286 | 0.400 | 20.1 | 60.6 | This work, [26] |
2.1. Rare Earth-Based AB5 Alloys
Method | Alloy formula/process/additives | Secondary phase (s) | Range of x, etc. | Capacity | HRD | Cycle life | Charge retention | Low temperature | Reference |
---|---|---|---|---|---|---|---|---|---|
S | La10.5Ce4.3Pr0.5Nd1.4Ni64.3−x Co5.0 Mn4.6Al6.0Zr0.2Fex | – | 0 to 1.5 | down | up | down | down | up | [28] |
S | La10.5Ce4.3Pr0.5Nd1.4Ni64.3Co8.4−xMn4.6Al6.0Cux | (Al, Mn)Ni | 0 to 5.4 | down | up | down | up | up | [29] |
S | La10.5Ce4.3Pr0.5Nd1.4Ni64.3−x Co5.0 Mn4.6Al6.0Zr0.2Mox | Mo | 0 to 4 | down | down | same | same | up | [30] |
S | La10.5Ce4.3Pr0.5Nd1.3Ni67.7−x−yMnxAly | – | Mn (0–0.6), Al (0–3.4) | – | – | up | up | – | [31] |
S | NdNi5−x−y−zCoxAlyMnz | – | Co (0–0.5), Al (0–0.5), Mn (0–0.8) | up | down | up | down | – | [32] |
S | La0.7Ce0.3Ni3.75Mn0.35 Al0.15Cu0.75−xFex | – | 0 to 0.2 | down | down | up | – | – | [33] |
S | La0.7Ce0.3Ni3.85Mn0.8Cu0.4 Fe0.15−x(Fe0.43B0.57)x | La3Ni12B2 | 0 to 0.15 | down | up | down | – | – | [34] |
S | LaNi3.55Co0.2−xMn0.35Al0.15 Cu0.75(Fe0.43B0.57)x | La3Ni12B2 | 0 to 0.1 | down | up | down | – | – | [35] |
S | LaNi3.55Co0.2−xMn0.35Al0.15Cu0.75(V0.81Fe0.19)x | Ni-rich, La-rich | 0 to 0.05 | up | up | down | – | – | [36] |
S | La0.7Ce0.3Ni3.75−xMn0.35Al0.15Cu0.75(Fe0.43B0.57)x | – | 0 to 0.15 | up | up | up | – | – | [37] |
S | La0.7Ce0.3Ni3.83−xMn0.35Al0.15Cu0.75(Fe0.43B0.57)x | La3Ni12B2 | 0 to 0.15 | down | up | down | – | – | [38] |
S | La0.7Ce0.3Ni3.75−xMn0.35Al0.15Cu0.75(V0.81Fe0.19)x | – | 0 to 0.05 | down | up | up | – | – | [39] |
S | La0.7Ce0.3Ni4.2Mn0.9−xCu0.37(V0.81Fe0.19)x | (V, Mn, Ni) | 0 to 0.1 | same | up | down | – | – | [40] |
S | La0.7Ce0.3Ni4.2Mn0.9−xCu0.37(Fe0.43B0.57)x | La3Ni12B2 | 0 to 0.1 | down | up | down | – | – | [41] |
S | La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75−x(Fe0.43B0.57)x | La3Ni12B2 | 0 to 0.1 | down | up | up | – | – | [42] |
S | La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75−x(V0.81Fe0.19)x | – | 0 to 0.1 | same | up | up | – | – | [43] |
S | La0.7Ce0.3(Ni3.65Mn0.35Al0.15Cu0.75(Fe0.43B0.57)0.10)x | La3Ni12B2Ce2Ni7 | 0.9 to 1.0 | up | up | up | – | – | [44] |
S | MlNi3.55Co0.75–xMn0.4Al0.3(Cu0.75P0.25)x | P-rich, Mn-rich | 0 to 0.5 | down | up | up then down | – | – | [45,46] |
S | LaNi5−xInx | – | 0.1 to 0.5 | down | – | up | – | – | [47] |
S | LaNi4.3(Co,Al)0.7−xInx | – | 0 to 0.1 | up | up | – | – | – | [48] |
S | LaNi4.1−xCo0.6Mn0.3Alx | – | 0 to 0.45 | down | down | up | up | – | [49] |
S | La0.78Ce0.22Ni3.73Mn0.30Al0.17FexCo0.8−x | – | 0 to 0.8 | down | down | up | up | – | [50] |
S | LaNi4.4−xCo0.3Mn0.3Alx | – | 0 to 0.2 | up | Up then down | up | up | – | [51] |
S | MmNi3.70−xMn0.35Co0.60Al0.25Bx | CeCo4B | 0 to 0.2 | down | up | – | – | – | [52] |
S | La0.35Ce0.65Ni3.54Mn0.35Co0.80−xAl0.32Mox | – | 0 to 0.25 | up | up | up | – | – | [53] |
S | Mm0.8−xTixLa0.2Ni3.7Mn0.5Co0.3Al0.38Mo0.02 | – | 0 to 0.05 | up | – | up | up | – | [54] |
S | La0.65−xCe0.25−xPr0.03Nd0.07Y2xNi3.65Mn0.3Co0.75Al0.3 | – | 0 to 0.04 | down | down | up | – | – | [55] |
S | La1−xYxNi3.55Mn0.4Co0.75Al0.3 | – | 0 to 0.1 | up | – | up | – | – | [56] |
S | Eliminates Co, Mn | – | – | up | – | – | up | – | [57] |
P | Pre-treatment if 12 M NaOH + 0.05 M NaBH4 | – | – | – | up | up | – | up | [58] |
P | Melt-spin | LaNi3, La2Ni3 | – | up | – | down | – | – | [59] |
P | Gas Atomization | – | – | down | same | up | up | same | [29] |
P | Annealing temperature increase | – | – | up | down | up | up | – | [60] |
A | Ni-PTFE plating | – | – | same | – | potentially up | – | – | [61] |
A | Carbon nanosphere | – | – | up | up | down | – | – | [62] |
A | Graphite | – | – | down | up | – | – | [63] | |
A | Co nano and Y2O3 | – | – | up | – | – | [64] | ||
A | Co3O4 | – | – | up | up | – | – | [65] | |
A | Co3O4 | – | – | up | up | up | – | – | [66] |
A | Ni(OH)2 | – | – | up | up | down | – | – | [67] |
2.2. Laves Phase-Based AB2 Alloys
Base alloy | Substitution | Major effects | Reference |
---|---|---|---|
C14-domintaed | Al | Al improves bulk diffusion and surface reactivity. Al and Co together improves all electrochemical performances | [87,88] |
C14-domintaed | B | B improves HRD and low-temperature performance but decreases charge retention, capacity, and cycle life | [85] |
C14-domintaed | C | C increases HRD and charge retention but decreases low-temperature, capacity and cycle life | [85] |
C14-domintaed | Co | Co provides easy activation, improves/decreases capacity, better cycle life and charge retention, but impedes HRD | [87,89,90] |
C14-domintaed | Cr | Cr improves charge retention but impedes HRD | [89] |
C14-domintaed | Mo | Mo improves HRD, low-temperature performance, charge retention, and cycle life | [91] |
C14-domintaed | Cu | Cu increases capacity, facilitates activation, but decreases HRD. | [92] |
C14-domintaed | Fe | Fe facilitates activation, increases total electrochemical capacity and effective surface reaction area, decreases HRD and bulk diffusion, and deteriorates low-temperature performance | [87,93] |
C14-domintaed | Gd | Gd improves low-temperature performance, but decreases charge retention, HRD, capacity, and cycle life | [85] |
C14-domintaed | La | La improves capacity, HRD, and low-temperature performance with a trade-off of inferior cycle stability | [94] |
C14-domintaed | Mg | Mg improves charge retention, deteriorates capacity, low-temperature performance, and cycle life | [85] |
C14-domintaed | Mn | Mn increases capacity, facilitates activation, but decreases cycle life | [89,95] |
C14-domintaed | Ni | Ni improves cycle life and HRD but reduces capacity | [89] |
C14-domintaed | Pt | Pt improves capacity and HRD | [96] |
C14-domintaed | Si | 1 at % of Si is beneficial to HRD and low-temperature performance | [97] |
C14-domintaed | Sn | Sn improves charge retention but deteriorates HRD and cycle life | [87,98] |
C14-domintaed | Ti | Ti increases HRD and facilitates activation | [99] |
C14-domintaed | V | V increases capacity but decreases HRD and charge retention | [100] |
Both C14- and C15-dominated | Y | Y improves activation, HRD, and low-temperature performance by increasing reaction surface area | [101,102] |
C14-domintaed | Zr | Zr increases capacity | [99] |
2.3. Superlattice A2B7-Type (A2B4-AB5-Hybrid-Type, such as AB3, A2B7, A5B19, and AB4) Alloys
Substitution/Process | Alloy formula | Range of x | Capacity | HRD | Cycle life | Charge retention | Comment | Reference |
---|---|---|---|---|---|---|---|---|
Ce | (La0.7Mg0.3)1−xCexNi2.8Co0.5 | 0 to 0.1 | down | up | up | – | – | [121] |
Dy | (La1−xDyx)0.8Mg0.2Ni3.4Al0.1 | 0 to 0.2 | up | – | same | down | – | [122] |
Gd | (La2−xGdxMg)(NiCoAlZn)3.5 | 0 to 1 | up | down | up | – | – | [123] |
Nd | La0.8−xNdxMg0.2Ni3.35Al0.1Si0.05 | 0 to 0.2 | up | up | up | – | – | [124] |
Nd | (La1−xNdx)2Mg(Ni0.8Co0.15Mn0.05)9 | 0 to 0.3 | down | – | up | – | – | [125] |
Pr | La0.75−xPrxMg0.25Ni3.2Co0.2Al0.1 | 0 to 0.4 | – | – | up | – | – | [126] |
Pr | La0.8−xPrxMg0.2Ni3.15Co0.2Al0.1Si0.05 | 0 to 0.3 | up | up | up | – | – | [127] |
Pr | La0.75−xPrxMg0.25Ni3.2Co0.2Al0.1 | 0 to 0.2 | down | – | up | – | – | [128] |
Sc | (La2−xGdxMg)(NiCoAlZn)3.5 | 0 to 1 | up | up | same | – | – | [123] |
Sm | La0.8−xSmxMg0.2Ni3.15Co0.2Al0.1Si0.05 | 0 to 0.1 | up | up | up | – | – | [129] |
Ti | (La0.67Mg0.33)1−xTixNi2.75Co0.25 | 0 to 0.05 | down | up | up | – | – | [130] |
Ti | (La1−xTix)2MgNi8.25Co0.75 | 0 to 0.1 | down | up | up | – | – | [131] |
Zr | La0.75−xPrxMg0.25Ni3.2Co0.2Al0.1 | 0 to 0.2 | up | – | up | – | – | [128] |
Zr | La0.75−xZrxMg0.25Ni3.2Co0.2Al0.1 | 0 to 0.2 | – | down | – | – | – | [132] |
Mg | La1.7+xMg1.3−x(NiCoMn)9.3 | 0 to 0.4 | up | down | down | – | Improves activation | [133] |
Mg | La0.85Pr0.15Mgx(Ni0.7Co0.2Mn0.1)9 | 0.5 to 1.0 | up | up | – | – | – | [134] |
Mg | La0.8−xGd0.2MgxNi3.1Co0.3Al0.1 | 0.1 to 0.15 | up | – | up | – | – | [135] |
Mg | La0.8−xGd0.2MgxNi3.1Co0.3Al0.1 | 0 to 0.15 | up | – | up | – | – | [136] |
Mg | La0.8−xGd0.2MgxNi3.3Co0.3Al0.1 | 0 to 0.15 | up | up | up | – | – | [137] |
Ca | La0.67Mg0.33−xCaxNi2.75Co0.25 | 0 to 0.05 | – | up | up | – | – | [138] |
Al | La0.75Mg0.25Ni3.5−xCo0.2Alx | 0 to 0.09 | down | down | up | – | – | [139] |
Co | LaNi3.2−xMn0.3Cox | 0.2 to 0.8 | down | – | up | up | – | [140] |
Co | La0.7Zr0.1Mg0.2Ni3.4−xCoxFe0.1 | 0.15 to 0.25 | down | up | up | – | – | [141] |
Co | La0.55Pr0.05Nd0.15Mg0.25Ni3.5−xCoxAl0.25 | 0 to 0.3 | up | up | same | – | – | [142] |
Co + Al | La0.45Pr0.135Nd0.315Mg0.1Ni3.9Al0.2 | 0 to 0.1 | down | up | up | – | – | [143] |
Co + Al | La2MgMn0.3Ni8.7−x(Co0.5Al0.5)x | 0 to 2 | down | up | up | – | – | [144] |
Co + Al | La0.55Pr0.05Nd0.15Mg0.25Ni3.5(Co0.5Al0.5)x | 0 to 0.3 | up | – | up | up | – | [145] |
Al | LaNi3. 8–xAlx | 0 to 0.4 | up then down | – | – | – | Improves activation | [146] |
Mn | (La0.8Nd0.2)2Mg(Ni0.9−x Co0.1Mnx)9 | 0 to 0.1 | up | – | up | – | – | [147] |
Mn | La0.78Mg0.22(Ni0.9−x Co0.1Mnx)3 | 0 to 0.01 | down | up | down | – | – | [148] |
Cu | LaMg2Ni9–xCux | 0 to 9 | down | – | – | – | – | [149] |
Si | La0.8Mg0.2Ni3.3Co0.52Six | 0 to 0.1 | down | up | up | – | – | [107] |
Ni | CeMn0.25Al0.25Ni1.5+x | 0 to 1.1 | up | – | – | – | – | [150] |
H2O2 in electrolyte | Nd18.8Mg2.5Ni75.1Al3.6 | – | up | up | up | – | [151] | |
Melt-spin | La0.75−xZrxMg0.25Ni3.2Co0.2Al0.1 | 0 to 0.2 | – | up | – | – | – | [132] |
Melt-spin | La2MgNi9 | – | – | – | – | – | Improves Mg-homogeneity | [152] |
Ball milling | La0.7Mg0.3Ni2.8Co0.5−xFex | 0 to 0.5 | up | – | up | – | – | [153] |
NiCuP plating | La0.88Mg0.12Ni2.95Mn0.10Co0.55Al0.10 | – | up | up | – | up | – | [154] |
Spark plasma sintering | La0.85Mg0.15Ni3.8 | – | same | – | up | – | – | [155] |
Polyaniline plating | La0.8Mg0.2Ni2.7Mn0.1Co0.55Al0.1 | – | – | up | up | – | – | [156] |
Magnetic annealing | La0.67Mg0.33Ni3.0 | – | up | up | up | – | – | [157] |
Chemical coprecipitation + metal reduction-diffusion | La0.67Mg0.33Ni3.0 | – | – | – | – | – | Produces multi-phase structure | [158] |
2.4. Ti-Ni-Based Alloys
2.5. Mg-Ni-Based Alloys
Substitution | Alloy formula | Range of x | Capacity | Cycle life | Comment | Reference |
---|---|---|---|---|---|---|
Ti | Mg1−xTixNi | 0 to 0.2 | up then down | up | As the Ti/Mg ratio increases, surface charge transfer resistance increases | [178,180] |
Ti | Mg0.7Ti0.3Ni | – | down | up | – | [185] |
Ti | Mg1−xTixNi | 0 to 0.1 | down | up | Reduces pulverization | [186] |
Zr | Mg1−xZrxNi | 0 to 0.2 | up then down | up | – | [178] |
La | Mg0.7Ti0.225La0.075Ni | – | down | up | Further improves corrosion resistance | [185] |
Al | Mg1−xAlxNi | 0 to 0.2 | down | up | – | [178] |
Al | Mg0.9Ti0.1NiAlx | 0 to 0.05 | down | up | Reduces pulverization | [187] |
B | Mg1−xBxNi | 0 to 0.2 | down | same | – | [178] |
Pd | Mg1−xPdxNi | 0 to 0.2 | down | up | Surface charge transfer resistance decreases and then increases | [179] |
Pd | Mg0.9Ti0.1NiAl0.05Pdx | 0 to 0.1 | down | up | Increases HRD | [187] |
Pd | Mg50Ni50−xPdx | 0 to 5 | down | up | – | [188] |
Mg/Ni | Mg0.85+xTi0.15Ni1.0−x | 0 to 0.1 | up | down | – | [180] |
Substitution/ Addition | Process | Alloy formula | Range of x | Capacity | HRD | Cycle life | Comment | Reference |
---|---|---|---|---|---|---|---|---|
Co | MS | Mg2Ni1−xCox | 0 to 0.4 | up | up | up | Promotes amorphous phase | [190,191,194,195] |
Mn | MS | Mg2Ni1−xMnx | 0 to 0.4 | up | up then down | up | Promotes amorphous phase | [192,194,195] |
Cu | MS | Mg2Ni1−xCux | 0 to 0.4 | up | up then down | up | – | [193,194,195] |
La | MS | Mg2−xLaxNi | 0 to 0.2 | – | up | up | Promotes amorphous phase | [196,197] |
– | MSM | Mg2Ni | – | up | – | up | – | [200] |
Co | HCS+BM | Mg2.1−xCoxNi | 0 to 0.1 | down | down | up | – | [204] |
Cr | HCS+BM | Mg2.1−xCrxNi | 0 to 0.1 | down | down | up | – | [204] |
Nb | HCS+BM | Mg2.1−xNbxNi | 0 to 0.1 | down | down | up | – | [204] |
Ti | HCS+BM | Mg2.1−xTixNi | 0 to 0.1 | down | down | up | – | [204] |
V | HCS+BM | Mg2.1−xVxNi | 0 to 0.1 | down | down | up | – | [204] |
Al | HCS+BM | Mg2−xAlxNi | 0 to 0.7 | up then down | – | – | – | [199] |
Ti | BM | Mg2−xTixNi | 0 to 0.5 | up | – | up | – | [198] |
B | BM | Mg1.5Ti0.3Zr0.1Al0.1Ni | – | – | – | – | Compares to others in [205] | [205] |
C | BM | Mg1.5Ti0.3Zr0.1Al0.1Ni | – | – | – | – | Compares to others in [205] | [205] |
Fe | BM | Mg1.5Ti0.3Zr0.1Al0.1Ni | – | – | – | – | Compares to others in [205] | [205] |
Pd | BM | Mg1.5Ti0.3Zr0.1Al0.1Ni | – | – | – | – | Compares to others in [205] | [205] |
Al | BM | Mg1.5Ti0.3Zr0.1Al0.1Ni | – | – | – | – | Compares to others in [205] | [205] |
Al | BM | Mg2−xAlxNi | 0 to 0.25 | up | – | – | – | [206] |
Multiwalled carbon nanotubes | BM | (MgAl)2Ni | – | up | – | – | – | [206] |
Al | MSP | Mg2−xAlxNi | 0 to 0.3 | up then down | – | – | Improves corrosion resistance | [207] |
2.6. Laves Phase-Related BCC Solid Solutions
2.7. Zr-Ni-Based Alloys
Substitution | Alloy formula | Range of x | Capacity | HRD | Comment | Reference |
---|---|---|---|---|---|---|
Ti | TixZr7−xNi10 | 0 to 2.5 | – | up | Activation becomes easier Ti1.5Zr5.5Ni10 has good combination of capacity and HRD, 204 mAh·g−1 and 79% | [76] |
V | Ti1.5Zr5.5VxNi10−x | 0 to 3.0 | up | down | Main phase shifts from Zr7Ni10 to C14 Ti1.5Zr5.5V0.5Ni9.5 with Zr7Ni10-predominant structure has good combination of capacity and HRD, 242 mAh·g−1 and 80% | [222] |
Cr | Ti1.5Zr5.5V0.5(CrxNi10−x)9.5 | 0.1 to 0.2 | down | down | Main phase shifts from Zr7Ni10 to Zr9Ni11 to C14 | [223,224] |
Mn | Ti1.5Zr5.5V0.5(MnxNi10−x)9.5 | 0.1 to 0.2 | up | up | Main phase shifts from Zr7Ni10 to Zr9Ni11 to C14 | [223,224] |
Fe | Ti1.5Zr5.5V0.5(FexNi10−x)9.5 | 0.1 to 0.2 | up | down | Main phase shifts from Zr7Ni10 to C15. | [223,224] |
Co | Ti1.5Zr5.5V0.5(CoxNi10−x)9.5 | 0.1 to 0.2 | down | down | Main phase shifts from Zr7Ni10 to Zr9Ni11 to C15 | [223,224] |
Cu | Ti1.5Zr5.5V0.5(CuxNi10−x)9.5 | 0.1 to 0.2 | down | down | Main phase stays Zr7Ni10 | [223,224] |
Al | Ti1.5Zr5.5V0.5(AlxNi10–x)9.5 | 0.1 to 0.2 | down | down | Main phase shifts from Zr7Ni10 to C14 | [223,224] |
Mg | Zr8Ni19Mg2 | – | down | down | Main phase shifts from Zr8Ni21 to tetragonal Zr7Ni10 | [225,226] |
Al | Zr8Ni19Al2 | – | up | down | Main phase shifts from Zr8Ni21 to tetragonal Zr7Ni10 | [225,226] |
Sc | Zr8Ni19Sc2 | – | down | down | Main phase shifts from Zr8Ni21 to tetragonal Zr7Ni10 | [225,226] |
V | Zr8Ni19V2 | – | down | down | Main phase shifts from Zr8Ni21 to Zr2Ni7 | [225,226] |
Mn | Zr8Ni19Mn2 | – | down | down | Main phase shifts from Zr8Ni21 to Zr2Ni7 | [225,226] |
Co | Zr8Ni19Co2 | – | down | down | Main phase shifts from Zr8Ni21 to Zr2Ni7 | [225,226] |
Sn | Zr8Ni19Sn2 | – | down | up | Main phase shifts from Zr8Ni21 to Zr2Ni7 Annealed Zr8Ni19Sn2 is Zr8Ni21-structured | [225,226] |
La | Zr8Ni19La2 | – | up | down | Main phase shifts from Zr8Ni21 to orthorhombic Zr7Ni10 | [225,226] |
Hf | Zr8Ni19Hf2 | – | up | down | Main phase shifts from Zr8Ni21 to orthorhombic Zr7Ni10 | [225,226] |
V | ZrVxNi4.5−x | 0 to 0.5 | up | down | Main phase shifts from ZrNi5 to monoclinic Zr2Ni7 | [26] |
V | ZrVxNi3.5−x | 0 to 0.9 | up then down | up | Main phase shifts from monoclinic Zr2Ni7 to cubic Zr2Ni7 | [25] |
2.8. Other Alloy Systems
Addition | Process | Base alloy | Addition level | Phase distribution | Capacity | HRD | Cycle life | Reference |
---|---|---|---|---|---|---|---|---|
MmNi 3.99Al0.29Mn0.3Co0.6 | BM | Ti0.32Cr0.43–x–yV0.25FexMny | 0 to 20 wt % | BCC | up | – | – | [227] |
LaNi5 | AM | Ti0.10Zr0.15V0.35Cr0.10Ni0.30 | 0 to 10 wt % | BCC+C14+Zr-rich | up then down | up | up | [213,214] |
ZrV2 | BM | Ti1.4V0.6Ni | 0 to 20 wt % | quasicrystal+Ti2Ni+BCC+C14+C15 | up | up | up | [220] |
La0.65Nd0.12Mg0.23Ni2.9Al0.1 | BM | Ti1.4V0.6Ni | 0 to 20 wt % | quasicrystal+Ti2Ni+BCC+LaNi5+PuNi3 | same | up | down | [217] |
LaNi3 | AM | Ti0.10Zr0.15V0.35Cr0.10Ni0.30 | 0 to10 wt % | BCC+C14+Zr-rich | up | up | up | [212] |
Ti15Zr18V18Ni29Cr5Co7Mn | BM | Ti1.4V0.6Ni | 0 to 40 wt % | quasicrystal+Ti2Ni+BCC+C14 | up | up | up | [218] |
La0.377Ce0.389Pr0.063Pr0.171Ni3.5Co0.6Mn0.4Al0.5 | BM | Mm0.80Mg0.20Ni2.56Co0.50Mn0.14Al0.12 | 0 to 30 wt % | LaNi5+La2Ni7 | down | up then down | up | [228] |
TiNi0.56Co0.44 | BM | MgNi | 0 to 50 wt % | Amorphous MgNi | down | up | [229] | |
TiNi | BM | Mg2Ni | 0 to 100 mol % | TiNi+Mg2Ni | down | [230] | ||
TiFe | BM | Mg2Ni | 0 to 100 mol % | TiFe+Mg2Ni | up | [230] | ||
Mg3MnNi2 | ERM+IEC | Mg2Ni | 0 to 100 mol % | Mg2Ni → Mg2Ni+Mg3MnNi2→ Mg3MnNi2 | up | up | [231] | |
Mg3AlNi2 | ERM+IEC | Mg2Ni | 0 to 100 mol % | Mg2Ni → Mg2Ni+Mg3AlNi2 → Mg3AlNi2 | up | up then down | [232] | |
Co | BM | Mg3MnNi2 | 0 to 200 mol % | amorphous Mg3MnNi2 | up | up | [233] | |
Ti | BM | Mg3MnNi2 | 0 to 200 mol % | amorphous Mg3MnNi2 | up | up | [233] |
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- Schmitt, R. Process for manufacturing a negative accumulator electrode for the reversible storage and restitution of hydrogen. U.S. Patent 3,972,726A, 3 August 1976. [Google Scholar]
- Willems, J.G. Metal hydride electrodes stability of LaNi5-related compounds. Philips J. Res. 1984, 39, 1–94. [Google Scholar]
- Anani, A.; Visintin, A.; Petrov, K.; Srinivasan, S.; Reilly, J.J.; Johnson, J.R.; Schwarz, R.B.; Desch, P.B. Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries. J. Power Sources 1994, 47, 261–275. [Google Scholar] [CrossRef]
- Kleperis, J.; Wójcik, G.; Czerwinski, A.; Skowronski, J.; Kopczyk, M.; Beltowska-Brzezinska, M. Electrochemical behavior of metal hydride. J. Solid State Electrochem. 2001, 5, 229–249. [Google Scholar] [CrossRef]
- Feng, F.; Geng, M.; Northwood, D.O. Electrochemical behaviour of intermetallic-based metal hydrides used in Ni/metal hydride (MH) batteries: A review. Int. J. Hydrog. Energy 2001, 26, 725–734. [Google Scholar] [CrossRef]
- Hong, K. The development of hydrogen storage electrode alloys for nickel hydride batteries. J. Power Sources 2001, 96, 85–89. [Google Scholar] [CrossRef]
- Cuevas, F.; Joubert, J.M.; Latroche, M.; Percheron-Guégan, A. Intermetallic compounds as negative electrodes of Ni/MH batteries. Appl. Phys. A 2001, 72, 225–238. [Google Scholar] [CrossRef]
- Petrii, O.A.; Levin, E.E. Hydrogen-accumulating materials in electrochemical systems. Russ. J. General Chem. 2007, 77, 790–796. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, L. Recent progress in hydrogen storage alloys for nickel/metal hydride secondary batteries. Int. J. Hydrog. Energy 2009, 34, 4788–4796. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, H.; Gao, M.; Wang, Q. Advanced hydrogen storage alloys for Ni/MH rechargeable batteries. J. Mater. Chem. 2011, 21, 4743–4755. [Google Scholar] [CrossRef]
- Wessells, C.; Ruffo, R.; Huggins, R.A.; Cui, Y. Investigations of the electrochemical stability of aqueous electrolytes for lithium battery applications. Electrochem. Solid-State Lett. 2010, 13, A59–A61. [Google Scholar] [CrossRef]
- Nakayama, H.; Nobuhara, K.; Kon, M.; Matsunaga, T. Electrochemical Properties of Metal Hydrides as Anode for Rechargeable Lithium Ion Batteries; The Electrochemical Society: Susono, Shizuoka, Japan, 2010; p. 1052. [Google Scholar]
- Dong, H.; Kiros, Y.; Noréus, D. An air-metal hydride battery using MmNi3.6Mn0.4Al0.3Co0.7 in the anode and a perovskite in the cathode. Int. J. Hydrog. Energy 2010, 35, 4336–4341. [Google Scholar] [CrossRef]
- Mizutani, M.; Morimitsu, M. Development of a Metal Hydride/Air Secondary Battery with Multiple Electrodes; The Electrochemical Society: Las Vegas, NV, USA, 2010; p. 453. [Google Scholar]
- Osada, N.; Morimitsu, M. Cycling Performance of Metal Hydride-Air Rechargeable Battery; The Electrochemical Society: Las Vegas, NV, USA, 2010; p. 194. [Google Scholar]
- Weng, G.; Li, C.V.; Chan, K. High Efficiency Vanadium-Metal Hydride hybrid Flow Battery: Importance in Ion Transport and Membrane Selectivity; The Electrochemical Society: Toronto, ON, Canada, 2013; p. 242. [Google Scholar]
- Weng, G.; Li, C.V.; Chan, K. Study of the Electrochemical Behavior of high Voltage Vanadium-Metal hydride Hybrid Flow Battery; The Electrochemical Society: Toronto, ON, Canada, 2013; p. 484. [Google Scholar]
- Weng, G.; Li, C.V.; Chan, K. Exploring the Role of Ionic Interfaces of the High Voltage Lead Acid-Metal Hydride Hybrid Battery; The Electrochemical Society: Hilton Hawaiian Village, HI, USA, 2012; p. 372. [Google Scholar]
- Purushothama, B.K.; Wainright, J.S. Analysis of pressure variations in a low-pressure nickel-hydrogen battery. Part 2: Cells with metal hydride storage. J. Power Sources 2012, 206, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Danko, D.B.; Sylenko, P.M.; Shlapak, A.M.; Khyzhun, O.Y.; Shcherbakova, L.G.; Ershova, O.G.; Solonin, Y.M. Photoelectrochemical cell for water decomposition with a hybrid photoanode and a metal-hydride cathode. Solar Energy Mater. Solar Cells 2013, 114, 172–178. [Google Scholar] [CrossRef]
- Beccu, K. Accumulator electrode with capacity for storing hydrogen and method of manufacturing said electrode. U.S. Patent 3,669,745A, 3 June 1972. [Google Scholar]
- Willems, J.J.G.; Buschow, K.H.J. From permanent magnets to rechargeable hydride electrodes. J. Less Common Metals 1987, 129, 13–30. [Google Scholar] [CrossRef]
- Young, K.; Huang, B.; Regmi, R.K.; Lawes, G.; Liu, Y. Comparisons of metallic clusters imbedded in the surface of AB2, AB5, and A2B7 alloys. J. Alloy. Compd. 2010, 506, 831–840. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Huang, B. Effects of annealing and stoichiometry to (Nd, Mg)(Ni, Al)3.5 metal hydride alloys. J. Power Sources 2012, 215, 152–159. [Google Scholar] [CrossRef]
- Young, M.; Chang, S.; Young, K.; Nei, J. Hydrogen storage properties of ZrVxNi3.5–x (x = 0.0–0.9) metal hydride alloys. J. Alloy. Compd. 2013, in press. [Google Scholar]
- Young, K.; Young, M.; Chang, S.; Huang, B. Synergetic effects in electrochemical properties of ZrVxNi4.5–x (x = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5) metal hydride alloys. J. Alloy. Compd. 2013, 560, 33–41. [Google Scholar]
- Van Vucht, J.H.N.; Kuijpers, F.A.; Burning, H.C.A.M. Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds. Philips Res. Rep. 1970, 25, 133–140. [Google Scholar]
- Young, K.; Ouchi, T.; Reichman, B.; Koch, J.; Fetcenko, M.A. Improvement in the low-temperature performance of AB5 metal hydride alloys by Fe-addition. J. Alloy. Compd. 2011, 509, 7611–7617. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Banik, A.; Koch, J.; Fetcenko, M.A.; Bendersky, L.A.; Wang, K.; Vaudin, M. Gas atomization of Cu-modified AB5 metal hydride alloys. J. Alloy. Compd. 2011, 509, 4896–4904. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Reichman, B.; Koch, J.; Fetcenko, M.A. Effects of Mo additive on the structure and electrochemical properties of low-temperature AB5 metal hydride alloys. J. Alloy. Compd. 2011, 509, 3995–4001. [Google Scholar] [CrossRef]
- Kong, L.; Chen, B.; Young, K.; Koch, J.; Chan, A.; Li, W. Effects of Al- and Mn-contents in the negative MH alloy on the self-discharge and long-term storage properties of Ni/MH battery. J. Power Sources 2012, 213, 128–139. [Google Scholar] [CrossRef]
- Young, K.; Huang, B.; Ouchi, T. Studies of Co, Al, and Mn substitutions in NdNi5 metal hydride alloys. J. Alloy. Compd. 2012, 543, 90–98. [Google Scholar] [CrossRef]
- Liu, B.; Li, A.; Fan, Y.; Hu, M.; Zhang, B. Phase structure and electrochemical properties of La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75–xFex hydrogen storage alloys. Trans. Nonferrous Metals Soc. China 2012, 22, 2730–2735. [Google Scholar] [CrossRef]
- Peng, X.; Liu, B.; Fan, Y.; Ji, L.; Zhang, B.; Zhang, Z. Phase structure and electrochemical hydrogen storage characteristics of La0.7Ce0.3Ni3.85Mn0.8Cu0.4Fe0.15–x(Fe0.43B0.57)x (x = 0–0.15) alloys. Int. J. Electrochem. Sci. 2013, 8, 3419–3428. [Google Scholar]
- Fan, Y.; Liu, B.; Zhang, B.; Ji, L.; Wang, Y.; Zhang, Z. Microstructures and electrochemical properties of LaNi3.55Co0.2–xMn0.35Al0.15Cu0.75(Fe0.43B0.57)x (x = 0–0.20) hydrogen storage alloys. Mater. Chem. Phys. 2013, 138, 803–809. [Google Scholar] [CrossRef]
- Liu, B.; Peng, X.; Fan, Y.; Ji, L.; Zhang, B.; Zhang, Z. Microstructures and electrochemical properties of LaNi3.55Co0.2–xMn0.35Al0.15Cu0.75(V0.81Fe0.19)x hydrogen storage alloys. Int. J. Electrochem. Sci. 2012, 7, 11966–11977. [Google Scholar]
- Liu, B.; Hu, M.; Fan, Y.; Ji, L.; Zhu, X.; Li, A. Microstructures and electrochemical properties of La0.7Ce0.3Ni3.75–xCu0.75Mn0.35Al0.15(Fe0.43B0.57)x hydrogen storage alloys. Electrochim. Acta 2012, 69, 384–388. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, Y.; Li, A. Phase structure and electrochemical properties of La0.7Ce0.3Ni3.83–xMn0.43Co0.25Al0.26Cu0.48(Fe0.43B0.57)x hydrogen storage alloys. Int. J. Electrochem. Sci. 2013, 8, 5469–5478. [Google Scholar]
- Liu, B.; Hu, M.; Zhou, Y.; Li, A.; Ji, L.; Fan, Y.; Zhang, Z. Microstructures and electrochemical characteristics of La0.7Ce0.3Ni3.75–xCu0.75Mn0.35Al0.15(V0.81Fe0.19)x (x = 0–0.20) hydrogen storage alloys. J. Alloy. Compd. 2012, 544, 105–110. [Google Scholar] [CrossRef]
- Peng, X.; Liu, B.; Fan, Y.; Ji, L.; Zhang, B.; Zhang, Z. Microstructures and electrochemical characteristics of La0.7Ce0.3Ni4.2Mn0.9–xCu0.37(V0.81Fe0.19)x hydrogen storage alloys. Electrochim.Acta 2013, 93, 207–212. [Google Scholar] [CrossRef]
- Peng, X.; Liu, B.; Fan, Y.; Zhu, X.; Peng, Q.; Zhang, Z. Microstructures and electrochemical hydrogen storage characteristics of La0.7Ce0.3Ni4.2Mn0.9–xCu0.37(Fe0.43B0.57)x (x = 0–0.20) alloys. J. Power Sources 2013, 240, 178–183. [Google Scholar] [CrossRef]
- Liu, B.; Hu, M.; Ji, L.; Fan, Y.; Wang, Y.; Zhang, Z.; Li, A. Phase structure and electrochemical properties of La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75–x(Fe0.43B0.57)x hydrogen storage alloys. J. Alloy. Compd. 2012, 516, 53–57. [Google Scholar] [CrossRef]
- Liu, B.; Hu, M.; Li, A.; Ji, L.; Zhang, B.; Zhu, X. Microstructure and electrochemical characteristics of La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75–x(V0.81Fe0.19)x hydrogen storage alloys. J. Rare Earths 2012, 30, 769–774. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, B.; Zhang, B.; Ji, L.; Zhang, Z. Phase structure and electrochemical properties of non-stoichiometric La0.7Ce0.3(Ni3.65Cu0.75Mn0.35Al0.15(Fe0.43B0.57)0.10)x hydrogen storage alloys. J. Rare Earths 2012, 30, 1249–1254. [Google Scholar]
- Zhang, B.; Wu, W.; Bian, X.; Tu, G. Investigations on the kinetics properties of the electrochemical reactions of MlNi3.55Co0.75−xMn0.4Al0.3(Cu0.75P0.25)x (x = 0.0, 0.1, 0.2, 0.3, 0.4) hydrogen storage alloys. J. Alloy. Compds 2012, 538, 189–192. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, W.; Bian, X.; Tu, G. Study on microstructure and electrochemical performance of the MlNi3.55Co0.75−xMn0.4Al0.3(Cu0.75P0.25)x (x = 0–0.5) composite alloys. J. Power Sources 2013, 236, 80–86. [Google Scholar] [CrossRef]
- Drulis, H.; Hackemer, A.; Folcik, L.; Giza, K.; Bala, H.; Gondek, Ł.; Figiel, H. Thermodynamic and electrochemical hydrogenation properties of LaNi5–xInx alloys. Int. J. Hydrog. Energy 2012, 37, 15850–15854. [Google Scholar] [CrossRef]
- Giza, K.; Bala, H.; Drulis, H.; Hackemer, A.; Folcik, L. Gaseous and electrochemical hydrogenation properties of LaNi4.3(Co, Al)0.7–xInx alloys. Int. J. Electrochem. Sci. 2012, 7, 9881–9891. [Google Scholar]
- Balogun, M.; Wang, Z.; Huang, H.; Liu, W.; Ni, C.; Li, G. Microstructure and electrode performance of LaNi4.1–xCo0.6Mn0.3Alx hydrogen storage alloys. J. Guilin Univ. Electron. Technol. 2012, 32, 508–513. [Google Scholar]
- Chao, D.; Zhong, C.; Ma, Z.; Yang, F.; Wu, Y.; Zhu, D.; Wu, C.; Chen, Y. Improvement in high-temperature performance of Co-free high-Fe AB5-type hydrogen storage alloys. Int. J. Hydrog. Energy 2012, 37, 12375–12383. [Google Scholar] [CrossRef]
- Balogun, M.; Wang, Z.; Chen, H.; Deng, J.; Yao, Q.; Zhou, H. Effect of Al content on structure and electrochemical properties of LaNi4.4–xCo0.3Mn0.3Alx hydrogen storage alloys. Int. J. Hydrog. Energy 2013, 39, 10926–10931. [Google Scholar] [CrossRef]
- Yang, S.; Han, S.; Li, Y.; Yang, S.; Hu, L. Effect of substituting B for Ni on electrochemical kinetic properties of AB5-type hydrogen storage alloys for high-power nickel/metal hydride batteries. Mater. Sci. Eng. B 2011, 176, 231–236. [Google Scholar] [CrossRef]
- Yang, S.; Han, S.; Song, J.; Li, Y. Influences of molybdenum substitution for cobalt on the phrase structure and electrochemical kinetic properties of AB5-type hydrogen storage alloys. J. Rare Earths 2011, 29, 692–697. [Google Scholar] [CrossRef]
- Srivastava, S.; Upadhyay, R.K. Investigations of AB5-type negative electrode for nickel-metal hydride cell with regard to electrochemical and microstructural characteristics. J. Power Sources 2010, 195, 2996–3001. [Google Scholar] [CrossRef]
- Peng, X.; Liu, B.; Zhou, Y.; Fan, Y.; Yang, Y.; Li, Q. Microstructures and electrochemical hydrogen storage characteristics of La0.65–xCe0.25–xPr0.03Nd0.07Y2xNi3.65Co0.75Mn0.3Al0.3 (x = 0–0.04) alloys. Int. J. Electrochem. Sci. 2013, 8, 2262–2271. [Google Scholar]
- Du, Y.; Li, W. Structural and electrochemical properties of annealed La1–xYxNi3.55Mn0.4Al0.3Co0.75 hydrogen storage alloys. J. Environ. Sci. 2011, 23, S59–S62. [Google Scholar] [CrossRef]
- Takasaki, T.; Nishimura, K.; Saito, M.; Fukunaga, H.; Iwaki, T.; Sakai, T. Cobalt-free nickel-metal hydride battery for industrial applications. J. Alloy. Compd. 2013. Available online: http://dx.doi.org/10.1016/j.jallcom.2013.01.092 (accessed on 4 July 2013). [Google Scholar]
- Su, G.; He, Y.; Liu, K. Effects of pretreatment on MlNi4.00Co0.45Mn0.38Al0.3 hydrogen storage alloy powders and the performance of 6 Ah prismatic traction battery. Int. J. Hydrog. Energy 2012, 37, 12384–12392. [Google Scholar] [CrossRef]
- Tian, X.; Liu, X.; Yao, Z.; Yan, S. Structure and electrochemical properties of rapidly quenched Mm0.3Ml0.7Ni3.55Co0.75Mn0.4Al0.3 hydrogen storage alloy. J. Mater. Eng. Perform. 2013, 22, 848–853. [Google Scholar] [CrossRef]
- Yang, S.; Liu, Z.; Han, S.; Zhang, W.; Song, J. Effects of annealing treatment on the microstructure and electrochemical properties of low-Co hydrogen storage alloys containing Cu and Fe. Rare Metals 2011, 30, 464–469. [Google Scholar] [CrossRef]
- Kim, J.; Yamamoto, K.; Yonezawa, S.; Takashima, M. Effects of Ni-PTFE composite plating on AB5-type hydrogen storage alloy. Mater. Lett. 2012, 82, 217–219. [Google Scholar] [CrossRef]
- Cuscueta, D.J.; Corso, H.L.; Arenillas, A.; Martinez, P.S.; Ghilarducci, A.A.; Salva, H.R. Electrochemical effect of carbon nanospheres on an AB5 alloy. Int. J. Hydrog. Energy 2012, 37, 14978–14982. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Dong, H.; Song, Y.; Shang, H. Electrochemical hydrogen absorbing properties of graphite/AB5 alloy composite electrode. J. Alloy. Compd. 2012, 510, 114–118. [Google Scholar]
- Jang, I.; Kalubarme, R.S.; Yang, D.; Kim, T.; Park, C.; Ryu, H.; Park, C. Mechanism for the degradation of MmNi3.9Co0.6Mn0.3Al0.2 electrode and effects of additives on electrode degradation for Ni-MH secondary batteries. Metals Mater. Int. 2011, 17, 891–897. [Google Scholar] [CrossRef]
- Zhang, Q.; Su, G.; Li, A.; Liu, K. Electrochemical performances of AB5-type hydrogen storage alloy modified with Co3O4. Trans. Nonferrous Metals Soc. China 2011, 21, 1428–1434. [Google Scholar] [CrossRef]
- Su, G.; He, Y.; Liu, K. Effects of Co3O4 as additive on the performance of metal hydride electrode and Ni-MH battery. Int. J. Hydrog. Energy 2012, 37, 11994–12002. [Google Scholar] [CrossRef]
- Yun, L.; Xing, K.; Feng, H. Impact of hydroxy Ni powders on electrochemical properties of AB5 hydrogen storage alloy. Value Eng. 2013, 30, 288–289. [Google Scholar]
- Nei, J.; Young, K.; Salley, S.O.; Ng, K.Y.S. Determination of C14/C15 phase abundance in Laves phase alloys. Mater. Chem. Phys. 2012, 136, 520–527. [Google Scholar] [CrossRef]
- Boettinger, W.J.; Newbury, D.E.; Wang, K.; Bendersky, L.A.; Chiu, C.; Kanttner, U.R.; Young, K.; Chao, B. Examination of multiphase (Zr,Ti)(V,Cr,Mn,Ni)2 Ni-MH electrode alloys: Part I. Dendritic solidification structure. Metall. Mater. Trans. A 2010, 41, 2033–2047. [Google Scholar] [CrossRef]
- Bendersky, L.A.; Wang, K.; Boettinger, W.J.; Newbury, D.E.; Young, K.; Chao, B. Examination of multiphase (Zr,Ti)(V,Cr,Mn,Ni)2 Ni-MH electrode alloys: Part II. Solid-state transformation of the interdendritic B2 phase. Metall. Mater. Trans. A 2010, 41, 1891–1906. [Google Scholar] [CrossRef]
- Bendersky, L.A.; Wang, K.; Boettinger, W.J.; Bewbury, D.E.; Young, K.; Chao, B. Microstructural Studies of Multiphase (Zr,Ti)(V,Cr,Mn,Co,Ni)2 Alloys for Ni/MH Negative Electrodes. In Intermetallic-Based Alloys for Structural and Functional Applications; Bewlay, P., Kumar, Y., et al., Eds.; MRS: Boston, MA, USA, 2010; Volume 1295. [Google Scholar]
- Bendersky, L.A.; Wang, K.; Levin, I.; Newbury, D.; Young, K.; Chao, B.; Creuziger, A. Ti12.5Zr21V10Cr8.5MnxCo1.5Ni46.5–x AB2-type metal hydride alloys for electrochemical storage application: Part 1. Structural characteristics. J. Power Sources 2012, 218, 474–486. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Huang, B.; Chao, B.; Fetcenko, M.A.; Bendersky, L.A.; Wang, K.; Chiu, C. The correlation of C14/C15 phase abundance and electrochemical properties in the AB2 alloys. J. Alloy. Compd. 2010, 506, 841–848. [Google Scholar] [CrossRef]
- Young, K.; Nei, J.; Ouchi, T.; Fetcenko, M.A. Phase abundances in AB2 metal hydride alloys and their correlations to various properties. J. Alloy. Compd. 2011, 509, 2277–2284. [Google Scholar] [CrossRef]
- Young, K.; Chao, B.; Bendersky, L.A.; Wang, K. Ti12.5Zr21V10Cr8.5MnxCo1.5Ni46.5–x AB2-type metal hydride alloys for electrochemical storage application: Part 2. Hydrogen storage and electrochemical properties. J. Power Sources 2012, 218, 487–494. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Liu, Y.; Reichman, B.; Mays, W.; Fetcenko, M.A. Structural and electrochemical properties of TixZr7−xNi10. J. Alloy. Compd. 2009, 480, 521–528. [Google Scholar] [CrossRef]
- Nei, J.; Young, K.; Regmi, R.; Lawes, G.; Salley, S.O.; Ng, K.Y.S. Gaseous phase hydrogen storage and electrochemical properties of Zr8Ni21, Zr7Ni10, Zr9Ni11, and ZrNi metal hydride alloys. Int. J. Hydrog. Energy 2012, 37, 16042–16055. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Yang, J.; Fetcenko, M.A. Studies of off-stoichiometric AB2 metal hydride alloy: Part 1. Structural characteristics. Int. J. Hyrdog. Energy 2011, 36, 11137–11145. [Google Scholar] [CrossRef]
- Young, K.; Nei, J.; Huang, B.; Fetcenko, M.A. Studies of off-stoichiometric AB2 metal hydride alloy: Part 2. Hydrogen storage and electrochemical properties. Int. J. Hydrog. Energy 2011, 36, 11146–11154. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Fetcenko, M.A. Pressure-composition-temperature hysteresis in C14 Laves phase alloys: Part 1. Simple ternary alloys. J. Alloy. Compd. 2009, 480, 428–433. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Mays, W.; Reichman, B.; Fetcenko, M.A. Pressure-composition-temperature hysteresis in C14 Laves phase alloys: Part 2. Applications in NiMH batteries. J. Alloy. Compd. 2009, 480, 434–439. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Fetcenko, M.A. Pressure-composition-temperature hysteresis in C14 Laves phase alloys: Part 3. Empirical formula. J. Alloy. Compd. 2009, 480, 440–448. [Google Scholar] [CrossRef]
- Young, K.; Koch, J.; Ouchi, T.; Banik, A.; Fetcenko, M.A. Study of AB2 alloy electrodes for Ni/MH battery prepared by centrifugal casting and gas atomization. J. Alloy. Compd. 2010, 496, 669–677. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Banik, A.; Koch, J.; Fetcenko, M.A. Improvement in the electrochemical properties of gas atomized AB2 metal hydride alloys by hydrogen annealing. Int. J. Hydrog. Energy 2011, 36, 3547–3555. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Huang, B.; Fetcenko, M.A. Effects of B, Fe, Gd, Mg, and C on the structure, hydrogen storage, and electrochemical properties of vanadium-free AB2 metal hydride alloy. J. Alloy. Compd. 2012, 511, 242–250. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Koch, J.; Fetcenko, M.A. Compositional optimization of vanadium-free hypo-stoichiometric AB2 metal hydride alloy for Ni/MH battery application. J. Alloy. Compd. 2012, 510, 97–106. [Google Scholar] [CrossRef]
- Young, K.; Fetcenko, M.A.; Koch, J.; Morii, K.; Shimizu, T. Studies of Sn, Co, Al, and Fe additives in C14/C15 Laves alloys for NiMH battery application by orthogonal arrays. J. Alloy. Compd. 2009, 486, 559–569. [Google Scholar] [CrossRef]
- Young, K.; Regmi, R.; Lawes, G.; Ouchi, T.; Reichman, B.; Fetcenko, M.A.; Wu, A. Effects of aluminum substitution in C14-rich multi-component alloys for NiMH battery application. J. Alloy. Compd. 2010, 490, 282–292. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Fetcenko, M.A. Roles of Ni, Cr, Mn, Sn, Co, and Al in C14 Laves phase alloys for NiMH battery application. J. Alloy. Compd. 2009, 476, 774–781. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Reichman, B.; Mays, W.; Regmi, R.; Lawes, G.; Fetcenko, M.A.; Wu, A. Optimization of Co-content in C14 Laves phase multi-component alloys for NiMH battery application. J. Alloy. Compd. 2010, 489, 202–210. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Huang, B.; Reichman, B.; Fetcenko, M.A. Effect of molybdenum content on structural, gaseous storage, and electrochemical properties of C14-predominant AB2 metal hydride alloys. J. Power Sources 2011, 196, 8815–8821. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Huang, B.; Reichman, B.; Fetcenko, M.A. Studies of copper as a modifier in C14-predominant AB2 metal hydride alloys. J. Power Sources 2012, 204, 205–212. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Huang, B.; Reichman, B.; Fetcenko, M.A. The structure, hydrogen storage, and electrochemical properties of Fe-doped C14-predominating AB2 metal hydride alloys. Int. J. Hydrog. Energy 2011, 36, 12296–12304. [Google Scholar] [CrossRef]
- Young, K.; Wong, D.F.; Ouchi, T.; Huang, B.; Reichman, B.; Fetcenko, M.A. Effects of La-addition to the structure, hydrogen storage, and electrochemical properties of C14 metal hydride alloys. J. Alloy. Compd. Submitted.
- Young, K.; Ouchi, T.; Koch, J.; Fetcenko, M.A. The role of Mn in C14 Laves phase multi-component alloys for NiMH battery application. J. Alloy. Compd. 2009, 477, 749–758. [Google Scholar] [CrossRef]
- Ruiz, F.C.; Peretti, H.A.; Visintin, A.; Triaca, W.E. A study on ZrCrNiPtx alloys as negative electrode components for NiMH batteries. Int. J. Hydrog. Energy 2011, 36, 901–906. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Huang, B.; Reichman, B.; Blankenship, R. Improvement in −40 °C electrochemical properties of AB2 metal hydride alloy by silicon incorporation. J. Alloy. Compd. 2013, 575, 65–72. [Google Scholar] [CrossRef]
- Young, K.; Fetcenko, M.A.; Ouchi, T.; Li, F.; Koch, J. Effects of Sn-substitution in C14 Laves phase alloys for NiMH battery application. J. Alloy. Compds 2009, 469, 406–416. [Google Scholar] [CrossRef]
- Young, K.; Fetcenko, M.A.; Li, F.; Ouchi, T. Structural, thermodynamic, and electrochemical properties of TixZr1–x(VNiCrMnCoAl)2 C14 Laves phase alloys. J. Alloy. Compd. 2008, 464, 238–247. [Google Scholar] [CrossRef]
- Young, K.; Fetcenko, M.A.; Li, F.; Ouchi, T.; Koch, J. Effect of vanadium substitution in C14 Laves phase alloys for NiMH battery application. J. Alloy. Compd. 2009, 468, 482–492. [Google Scholar] [CrossRef]
- Young, K.; Young, M.; Ouchi, T.; Reichman, B.; Fetcenko, M.A. Improvement in high-rate dischargeability, activation, and low-temperature performance in multi-phase AB2 alloys by partial substitution of Zr by Y. J. Power Sources 2012, 215, 279–287. [Google Scholar] [CrossRef]
- Young, K.; Reichman, B.; Fetcenko, M.A. Electrochemical performance of AB2 metal hydride alloys measured at −40 °C. J. Alloy. Compd. 2013. Available online: http://dx.doi.org/10.1016/j.jallcom.2013.01.125 (accessed on 18 June 2013). [Google Scholar]
- Yasuoka, S.; Magari, Y.; Murata, T.; Tanaka, T.; Ishida, J.; Nakamura, H.; Nohma, T.; Kihara, M.; Baba, Y.; Teraoka, H. Development of high-capacity nickel-metal hydride batteries using superlattice hydrogen-absorbing alloys. J. Power Sources 2006, 156, 662–666. [Google Scholar] [CrossRef]
- Yasuoka, S.; Kihara, M. Development of high capacity nickel-metal hydride batteries using superlattice hydrogen-absorbing alloys. Rare Earths 2006, 48, 112–113. [Google Scholar]
- Teraoka, H. Development of low self-discharge nickel-metal hydride battery. Available online: http://www.scribd.com/doc/9704685/Teraoka-Article-En (accessed on 18 July 2013).
- Ching, P.; Liu, S.; Tan, M. The research and development of A2B7-type of La2Ni7-based MH alloy. Technol. Trend 2011, 14, 23–24. [Google Scholar]
- Zhang, Y.; Chen, L.; Yang, T.; Xu, C.; Ren, H.; Zhao, D. The electrochemical hydrogen storage performances of Si-added La-Mg-Ni-Co-based A2B7-type electrode alloys. Rare Metals 2013. Available online: http://dx.doi.org/10.1007/s12598-013-0053-x (accessed on 21 June 2013). [Google Scholar]
- Dong, Z.; Ma, L.; Ding, Y.; Wu, Y.; Shen, X.; Wang, L. Effects of sintering temperature on microstructure and electrochemical characteristics of La-Mg-Ni system hydrogen storage alloys. J. Nanjing Univ. Technol. 2011, 33, 12–15. [Google Scholar]
- Liu, J.; Han, S.; Li, Y.; Yang, S.; Shen, W.; Zhang, L.; Zhou, Y. An investigation on phase transformation and electrochemical properties of as-cast and annealed La0.75Mg0.25Nix (x = 3.0, 3.3, 3.5, 3.8) alloys. J. Alloy. Compd. 2013, 552, 119–126. [Google Scholar] [CrossRef]
- Hu, W.; Denys, R.V.; Nwakwuo, C.C.; Holm, T.; Maehlen, J.P.; Solberg, J.K.; Yartys, V.A. Annealing effect on phase composition and electrochemical properties of the Co-free La2MgNi9 anode for Ni-metal hydride batteries. Electrochim. Acta 2013, 96, 27–33. [Google Scholar] [CrossRef]
- Huang, T.; Yuan, X.; Yu, J.; Wu, Z.; Han, J.; Sun, G.; Xu, N.; Zhang, Y. Effects of annealing treatment and partial substitution of Cu for Co on phase composition and hydrogen storage performance of La0.7Mg0.3Ni3.2Co0.35 alloy. Int. J. Hydrog. Energy 2012, 37, 1074–1079. [Google Scholar] [CrossRef]
- Jiang, W.; Mo, X.; Wei, Y.; Zhou, Z.; Guo, J. Effect of annealing treatment on hydrogen storage properties of La-Ti-Mg-Ni-based alloy. J. Rare Earths 2012, 30, 450–455. [Google Scholar] [CrossRef]
- Jiang, W.; Qin, C.; Zhu, R.; Guo, J. Annealing effect on hydrogen storage property of Co-free La1.8Ti0.2MgNi8.7Al0.3 alloy. J. Alloy. Compd. 2013, 565, 37–43. [Google Scholar] [CrossRef]
- Fang, X.; Luo, Y.; Gao, Z.; Zhang, G.; Kang, L. Effects of annealing treatment on microstructure and electrochemical properties of La0.68Gd0.2Mg0.12Ni3.3Co0.3Al0.1 hydrogen storage alloys. J. Funct. Mater. 2012, 20, 2751–2756. [Google Scholar]
- Guo, P.; Lin, Y.; Zhao, H.; Guo, S.; Zhao, D. Structure and high-temperature electrochemical properties of La0.6Nd0.15Mg0.25Ni3.3Si0.10 hydrogen storage alloys. J. Rare Earths 2011, 29, 574–579. [Google Scholar] [CrossRef]
- Li, F.; Young, K.; Ouchi, T.; Fetcenko, M.A. Annealing effects on structural and electrochemical properties of (LaPrNdZr)0.83Mg0.17(NiCoAlMn)3.3 alloy. J. Alloy. Compd. 2009, 471, 371–377. [Google Scholar]
- Quao, Y.Q.; Zhao, M.S.; Zhang, Q.M.; Zhai, J. Crystal structure and some dynamic performances of Ti0.25V0.34Du0.01Cr0.1Ni0.3 hydrogen storage electrode. Chin. Chem. Lett. 2011, 22, 93–96. [Google Scholar] [CrossRef]
- Luo, Y.; Feng, C.; Teng, X.; Kang, L. Study on electrochemical properties of annealed R0.67Mg0.33Ni3.0 (R = La, Ce, Pr, Nd) hydrogen storage alloys. Rare Metal. Mater. Eng. 2010, 39, 90–95. [Google Scholar]
- Zhou, X.; Young, K.; West, J.; Regalado, J.; Cherisol, K. Degradation mechanisms of high-energy bipolar nickel metal hydride battery with AB5 and A2B7 alloys. J. Alloy. Compd. 2013, in press. [Google Scholar]
- Liu, Y.; Cao, Y.; Huang, L.; Gao, M.; Pan, H. Rare earth-Mg-Ni-based hydrogen storage alloys as negative electrode materials for Ni/MH batteries. J. Alloy. Compd. 2011, 509, 675–686. [Google Scholar] [CrossRef]
- Dong, Z.; Ma, L.; Wu, Y.; Wang, L.; Shen, X. Microstructure and electrochemical hydrogen storage characteristics of (La0.7Mg0.3)1–xCexNi2.8Co0.5 (x = 0–0.20) electrode alloys. Int. J. Hydrog. Energy 2011, 36, 3016–3021. [Google Scholar] [CrossRef]
- Wang, B.; Chen, Y.; Liu, Y. Structure and electrochemical properties of (La1–xDyx)0.8Mg0.2Ni3.4Al0.1 (x = 0.0–0.20) hydrogen storage alloys. Int. J. Hydrog. Energy 2012, 37, 9082–9087. [Google Scholar] [CrossRef]
- Luo, Y.; Jia, Q.; Wu, T.; Kang, L. Influence of rare-earth elements R on phase-structure and electrochemical properties of hydrogen storage alloys (LaRMg) (NiCoAlZn)3.5. J. Lanzhou Univ. Technol. 2009, 35, 1–6. [Google Scholar]
- Zhang, Y.; Hou, Z.; Li, B.; Ren, H.; Cai, Y.; Zhao, D. Electrochemical hydrogen storage characteristics of as-cast and annealed La0.8–xNdxMg0.2Ni3.15Co0.2Al0.1Si0.05 (x = 0–0.4) alloys. Trans. Nonferrous Metals Soc. China 2013, 23, 1403–1412. [Google Scholar] [CrossRef]
- Liu, S.; Qin, M.; Qing, P.; Huang, X.; Huang, H.; Guo, J. Study on the hydrogen storage and electrochemical characteristics of (La1–xNdx)2Mg(Ni0.8Co0.15Mn0.05)9 (x = 0~0.3) alloys. Guangxi Sci. 2011, 18, 242–245. [Google Scholar] [CrossRef]
- Ren, H.; Li, B.; Hou, Z.; Liu, X.; Chen, L.; Zhang, Y. Enhanced electrochemical cycle stability of RE-Mg-Ni system A2B7-type alloys by melt spinning and substituting La with Pr. Adv. Mater. Res. 2012, 415–417, 1603–1607. [Google Scholar]
- Zhang, Y.; Hou, Z.; Yang, T.; Zhang, G.; Li, X.; Zhao, D. Structure and electrochemical hydrogen storage characteristics of La0.8–xPrxMg0.2Ni3.15Co0.2Al0.1Si0.05 (x = 0–0.4) electrode alloys. J. Cent. South. Univ. Technol. 2013, 20, 1142–1150. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, Y.; Zhao, C.; Zhai, T.; Zhang, G.; Zhao, D. Electrochemical performances of the as-melt La0.75–xMxMg0.25Ni3.2Co0.2Al0.1 (M = Pr, Zr; x = 0, 0.2) alloys applied to Ni/metal hydride (MH) battery. Int. J. Hydrog. Energy 2012, 37, 14590–14597. [Google Scholar] [CrossRef]
- Li, P.; Hou, Z.; Yang, T.; Shang, H.; Qu, X.; Zhang, Y. Structure and electrochemical hydrogen storage characteristics of the as-cast and annealed La0.8–xSmxMg0.2Ni3.15Co0.2Al0.1Si0.05 (x = 0–0.4) alloys. J. Rare Earths 2012, 30, 696–704. [Google Scholar] [CrossRef]
- Dong, Z.; Wu, Y.; Ma, L.; Shen, X.; Wang, L. Influences of low-Ti substitution for La and Mg on the electrochemical and kinetic characteristics of AB3-type hydrogen storage alloy electrodes. Sci. China Technol. Sci. 2010, 53, 242–247. [Google Scholar] [CrossRef]
- Dong, Z.; Ma, L.; Wang, L.; Wu, Y.; Shen, X. Effects of substituting La with Ti on microstructure and electrochemical properties of AB3-type hydrogen storage alloys. J. Nanjing Univ. Technol. 2011, 33, 57–62. [Google Scholar]
- Zhang, Y.; Yang, T.; Shang, H.; Chen, L.; Ren, H.; Zhao, D. Electrochemical hydrogen storage kinetics of La0.75–xZrxMg0.25Ni3.2Co0.2Al0.1 (x = 0–0.2) alloys prepared by melt spinning. Energy Procedia 2012, 16, 1275–1282. [Google Scholar] [CrossRef]
- Wei, F.; Li, Li.; Xiang, H.; Li, H.; Wei, F. Phase structure and electrochemical properties of La1.7+xMg1.3–x(NiCoMn)9.3 (x = 0 – 0.4) hydrogen storage alloys. Trans. Nonferrous Metals Soc. China 2012, 22, 1995–1999. [Google Scholar] [CrossRef]
- Jiang, L.; Lan, Z.; Li, G.; Guo, J. Influence of magnesium on electrochemical properties of RE3–xMgx(Ni0.7Co0.2Mn0.1)9 (x = 0.5–1.25) alloy electrodes. J. Rare Earths 2012, 30, 1255–1259. [Google Scholar] [CrossRef]
- Gao, Z.; Luo, Y.; Li, R.; Lin, Z.; Kang, L. Phase structures and electrochemical properties of La0.8–xGd0.2MgxNi3.1Co0.3Al0.1 hydrogen storage alloys. J. Power Sources 2013, 241, 509–516. [Google Scholar] [CrossRef]
- Gao, Z.; Kang, L.; Luo, Y. Influence of magnesium content on structure and performance of A2B7-type RE-Mg-Ni Hydrogen storage alloys. Chem. J. Chin. Univ. 2012, 33, 2035–2042. [Google Scholar]
- Guo, X.; Luo, Y.; Gao, Z.; Zhang, G.; Kang, L. The effect of Mg on the microstructure and electrochemical properties of La0.8–xGd0.2MgxNi3.3Co0.3Al0.1 (x = 0–0.4) hydrogen storage alloys. J. Funct. Mater. 2012, 18, 2450–2455. [Google Scholar]
- Dong, Z.; Wu, Y.; Ma, L.; Wang, L.; Shen, X.; Wang, L. Microstructure and electrochemical hydrogen storage characteristics of La0.67Mg0.33–xCaxNi2.75Co0.25 (x = 0–0.15) electrode alloys. Int. J. Hydrog. Energy 2011, 36, 3050–3055. [Google Scholar] [CrossRef]
- Dong, X.; Yang, L.; Li, X.; Wang, Q.; Ma, L.; Lin, Y. Effect of substitution of aluminum for nickel on electrochemical properties of La0.75Mg0.25Ni3.5–xCo0.2Alx hydrogen storage alloys. J. Rare Earths 2011, 29, 143–149. [Google Scholar] [CrossRef]
- Qin, M.; Liu, S.; Qing, P.; Lan, Z.; Guo, J. The influence of Co content on LaNi3.2–xMn0.3Cox (x = 0.2~0.8) alloy hydrogen storage and electrochemical properties. Phys. Procedia 2011, 22, 577–583. [Google Scholar] [CrossRef]
- Lan, Z.; Yan, W.; Qin, C.; Lu, Z.; Jiang, J.; Guo, J. Preparation and electrochemical properties of La0.7Zr0.1Mg0.2Ni3.4–xCoxFe0.1 Alloy. Guangxi Sci. 2012, 19, 134–138. [Google Scholar]
- Qin, M.; He, B.; Qing, P.; Lu, Z.; Liu, Y.; Guo, J. Effect of Co content on electrochemical properties of La0.55Pr0.05Nd0.15Mg0.25Ni3.5–xCoxAl0.25 (x = 0~0.4) hydrogen storage alloy. Mater. Sci. Eng. Powder Metall. 2012, 17, 160–165. [Google Scholar]
- Xiong, K.; Zhu, R.; Ding, Y.; Lan, Z.; Huang, C.; Guo, J. Study on the electrochemical properties of La0.7Mg0.3Ni3.4–x(Al0.3Co0.4)0.2+x (x = 0~0.3) hydrogen storage alloy electrodes. Guangxi Sci. 2012, 19, 57–63. [Google Scholar]
- Dong, Z.; Ma, L.; Shen, X.; Wang, L.; Wu, Y.; Wang, L. Cooperative effect of Co and Al on the microstructure and electrochemical properties of AB3-type hydrogen storage electrode alloys for advanced MH/Ni secondary battery. Int. J. Hydrog. Energy 2011, 36, 893–900. [Google Scholar] [CrossRef]
- Qin, M.; Lan, Z.; Ding, Y.; Xiong, K.; Liu, Y.; Guo, J. A study on hydrogen storage and electrochemical properties of La0.55Pr0.05Nd0.15Mg0.25Ni3.5(Co0.5Al0.5)x (x = 0.0, 0.1, 0.3, 0.5) alloys. J. Rare Earths 2012, 30, 222–227. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Y.; Li, Q.; Yang, W. Microstructures and electrochemical properties of LaNi3.8–xAlx hydrogen storage alloys. J. Rare Earths 2013, 31, 497–501. [Google Scholar] [CrossRef]
- Qin, M.; Liu, S.; Qing, P.; Lan, Z.; Guo, J. Effect of Mn substitution for Ni on hydrogen storage properties and electrochemical characteristics of (La0.8Nd0.2)2Mg(Ni0.9–xCo0.1Mnx)9 alloys. Mater. Rev. 2011, 25, 35–39. [Google Scholar]
- Zhang, H.; Wang, B.; Wang, D.; Sui, Y.; He, D.; Xia, B. Effect of Mn content on the structure and electrochemical characteristics of (La0.78Mg0.22)(Ni(0.9–x)Co0.1Mnx)3.5 hydrogen storage alloys. Shanghai Metals 2010, 32, 16–19. [Google Scholar]
- Pavlyuk, V.; Pozycka-Sokolowska, E.; Marciniak, B.; Paul-Boncour, V.; Dorogova, M. The structural, magnetic, hydrogenation and electrode properties of REMg2Cu9– xNix alloys (RE = La, Pr, Tb). Cent. Eur. J. Chem. 2011, 9, 1133–1142. [Google Scholar] [CrossRef]
- Hou, C.; Zhao, M.; Li, J.; Huang, L. Phase structure and electrochemical characteristics of CeMn0.25Al0.25Ni1.5+x (x = 0.0, 0.3, 0.5, 0.7, 0.9, 1.1) alloys. Rare Metal. Mater. Eng. 2012, 41, 100–104. [Google Scholar]
- Young, K.; Wu, A.; Qiu, Z.; Tan, J.; Mays, W. Effects of H2O2 addition to the cell balance and self-discharge of Ni/MH batteries with AB5 and A2B7 alloys. Int. J. Hydrog. Energy 2012, 37, 9882–9891. [Google Scholar] [CrossRef]
- Nwakwuo, C.C.; Holm, T.; Denys, R.V.; Hu, W.; Maehlen, J.P.; Solberg, J.K.; Yartys, V.A. Effect of magnesium content and quenching rate on the phase structure and composition of rapidly solidified La2MgNi9 metal hydride battery electrode alloy. J. Alloy. Compd. 2013, 555, 201–208. [Google Scholar] [CrossRef]
- Tang, C.; Pan, W.; Qin, Y.; Zhou, H. Preparation and hydrogen storage properties of La0.7Mg0.3Ni2.8Co0.5–xFex series alloys. Chin. J. Nonferrous Metals 2011, 21, 1373–1379. [Google Scholar] [CrossRef]
- Yang, S.; Liu, H.; Han, S.; Li, Y.; Shen, W. Effects of electrodeless composite plating Ni-Cu-P on the electrochemical properties of La-Mg-Ni-based hydrogen storage alloy. Appl. Surf. Sci. 2013, 271, 210–215. [Google Scholar] [CrossRef]
- Zhang, J.; Villeroy, B.; Knosp, B.; Bernard, P.; Latroche, M. Structural and chemical analyses of the new ternary La5MgNi24 phase synthesized by spark plasma sintering and used as negative electrode material for Ni-MH batteries. Int. J. Hydrog. Energy 2012, 37, 5225–5233. [Google Scholar] [CrossRef]
- Shen, W.; Han, S.; Li, Y.; Yang, S.; Miao, Q. Effect of electroplating polyaniline on electrochemical kinetics of La-Mg-Ni-based hydrogen storage alloy. Appl. Surf. Sci. 2012, 258, 6316–6320. [Google Scholar] [CrossRef]
- Yang, Z.P.; Li, Q.; Zhao, X.J. Influence of magnetic annealing on electrochemical performance of La0.67Mg0.33Ni3.0 hydride electrode alloy. J. Alloy. Compd. 2013, 558, 99–104. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, D.; Hou, X.; Huang, X.; Sun, L. Research on a new synthesis technology of La-Mg-Ni system alloys and microstructure of La0.67Mg0.33Ni3.0 alloys. Rare Metal. Mater. Eng. 2012, 41, 2075–2080. [Google Scholar] [CrossRef]
- Justi, E.W.; Ewe, H.H.; Kalberlah, A.W.; Saridakis, N.M.; Schaefer, M.H. Electrocatalysis in the nickel-titanium system. Energy Convers. 1970, 10, 146–156. [Google Scholar] [CrossRef]
- Gutjahr, M.A.; Buchner, H.; Beccu, K.D.; Saeufferer, H. A new type of reversible negative electrode for alkaline storage batteries based on metal alloy hydrides. Power Sources 1973, 4, 79–91. [Google Scholar]
- Beccu, K. Negative electrode of titanium-nickel alloy hydride phases. U.S. Patent 3,824,131, 16 July 1974. [Google Scholar]
- Zhao, X.; Li, J.; Yao, Y.; Ma, L.; Shen, X. Electrochemical hydrogen storage properties of non-equilibrium Ti2Ni alloy. RSC Adv. 2012, 2, 2149–2153. [Google Scholar] [CrossRef]
- Emami, H.; Cuevas, F. Hydrogenation properties of shape memory Ti(Ni, Pd) compds. Intermetallics 2011, 19, 876–886. [Google Scholar] [CrossRef]
- Emami, H.; Souques, R.; Crivello, J.; Cuevas, F. Electronic and structural influence of Ni by Pd substitution on the hydrogenation properties of TiNi. J. Solid State Chem. 2013, 198, 475–484. [Google Scholar] [CrossRef]
- Nei, J.; Young, K.; Wong, D.F. Electrochemical properties of TiNi0.9X0.1 (X = Ni, Cr, Mn, Fe, Co, Cu) metal hydride alloys. J. Alloy. Compd. Being prepared for submission.
- Zhao, X.; Ma, L.; Qu, X.; Ding, Y.; Shen, X. Effect of mechanical milling on the structure and electrochemical properties of Ti2Ni alloy in an alkaline battery. Energy Fuels 2009, 23, 4678–4682. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, L.; Yao, Y.; Ding, Y.; Shen, X. Ti2Ni alloy: A potential candidate for hydrogen storage in nickel/metal hydride secondary batteries. Energy Environ. Sci. 2010, 3, 1316–1321. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, J.; Shen, X.; Yang, M.; Ma, L. Structure and electrochemical hydrogen storage properties of A2B-type Ti-Zr-Ni alloys. Int. J. Hydrog. Energy 2012, 37, 5050–5055. [Google Scholar] [CrossRef]
- Li, X.D.; Elkedim, O.; Nowak, M.; Jurczyk, M.; Chassagnon, R. Structural characterization and electrochemical hydrogen storage properties of Ti2–xZrxNi (x = 0, 0.1, 0.2) alloys prepared by mechanical alloying. Int. J. Hydrog. Energy 2013, 38, 12126–12132. [Google Scholar] [CrossRef]
- Cao, X.; Ma, L.; Yang, M.; Zhao, X.; Ding, Y. Electrochemical properties of the amorphous Ti3Ni2 alloy in Ni/MH batteries. Rare Metal. Mater. Eng. 2012, 41, 1511–1515. [Google Scholar] [CrossRef]
- Gibbons, P.C.; Kelton, K.F. Physical Properties of Quasicrystals; Stadnik, Z.M., Ed.; Springer: Berlin, Germany, 1999; p. 403. [Google Scholar]
- Takasaki, A.; Kuroda, C.; Lee, S.; Kim, J. Electrochemical properties of Ti45Zr38–xNi17+x (0 ≤ x ≤ 8) quasicrystals produced by rapid-quenching. J. Alloy. Compd. 2011, 509, S782–S785. [Google Scholar] [CrossRef]
- Baster, D.; Takasaki, A.; Kuroda, C.; Hanc, E.; Lee, S.; Swierczek, K.; Szmyd, J.S.; Kim, J.; Molenda, J. Effect of mechanical milling on electrochemical properties of Ti45Zr38–xNi17+x (x = 0,8) quasicrystals produced by rapid-quenching. J. Alloy. Compd. 2003. Available online: http://dx.doi.org/10.1016/j.jallcom.2013.03.272 (accessed on 27 May 2013). [Google Scholar]
- Ariga, Y.; Takasaki, A.; Kuroda, C.; Kulka, A. Electrochemical properties of Ti45–xZr30+xNi25 (x = −4, 0, 4) quasicrystal and amorphous electrodes produced by mechanical alloying. J. Alloy. Compd. 2003, in press. [Google Scholar]
- Hu, W.; Wang, L.; Wang, L. Quinary icosahedral qausicrystalline Ti-V-Ni-Mn-Cr alloy: A novel anode material for Ni-MH rechargeable batteries. Mater. Lett. 2011, 65, 2868–2871. [Google Scholar] [CrossRef]
- Hu, W.; Yi, J.; Zheng, B.; Wang, L. Icosahedral qausicrystalline (Ti1.6V0.4Ni)100–xScx alloys: Synthesis, structure and their application in Ni-MH batteries. J. Solid State Chem. 2013, 202, 1–5. [Google Scholar] [CrossRef]
- Ma, F.; Liu, X.; Yan, S.; Ao, D.; Ren, Y. Research progress of influence factors on electrochemical performance of Mg-base hydrogen storage alloys. Metallic Funct. Mater. 2011, 34, 67–70. [Google Scholar]
- Anik, M.; Özdemir, G.; Küçükdeveci, N.; Baksan, B. Effect of Al, B, Ti and Zr additive elements on the electrochemical hydrogen storage performance of MgNi alloy. Int. J. Hydrog. Energy 2011, 36, 1568–1577. [Google Scholar] [CrossRef]
- Anik, M.; Özdemir, G.; Küçükdeveci, N. Electrochemical hydrogen storage characteristics of Mg-Pd-Ni ternary alloys. Int. J. Hydrog. Energy 2011, 36, 6744–6750. [Google Scholar] [CrossRef]
- Anik, M. Effect of titanium additive element on the discharging behavior of MgNi alloy electrode. Int. J. Hydrog. Energy 2011, 36, 15075–15080. [Google Scholar] [CrossRef]
- Anik, M.; Karanfil, F.; Küçükdeveci, N. Development of the high performance magnesium based hydrogen storage alloy. Int. J. Hydrog. Energy 2012, 37, 299–308. [Google Scholar] [CrossRef]
- Etiemble, A.; Idrissi, H. On the decrepitation mechanism of MgNi and LaNi5-based electrodes studied by in situ acoustic emission. J. Power Sources 2011, 196, 5168–5173. [Google Scholar] [CrossRef]
- Etiemble, A.; Idrissi, H.; Roué, L. In situ investigation of the volume change and pulverization of hydride materials for Ni-MH batteries by concomitant generated force and acoustic emission measurements. J. Power Sources 2012, 205, 500–505. [Google Scholar] [CrossRef]
- Kim, S.; Chourashiya, M.G.; Park, C.; Park, C. Electrochemical performance of NAFION coated electrodes of hydriding combustion synthesized MgNi based composite hydride. Mater. Lett. 2013, 93, 81–84. [Google Scholar] [CrossRef]
- Liu, J. Effect of Ti-La substitution on electrochemical properties of amorphous MgNi-based secondary hydride electrodes. J. Tianjin Norm. Univ. 2011, 31, 67–70. [Google Scholar]
- Etiemble, A.; Idrissi, H. Effect of Ti and Al on the pulverization resistance of MgNi-based metal hydride electrodes evaluated by acoustic emission. Int. J. Hydrog. Energy 2013, 38, 1136–1144. [Google Scholar] [CrossRef]
- Etiemble, A.; Rouosselot, S.; Guo, W.; Idrissi, H.; Roué, L. Influence of Pd addition on the electrochemical performance of Mg-Ni-Ti-Al-based metal hydride for Ni-MH batteries. Int. J. Hydrog. Energy 2013, 38, 7169–7177. [Google Scholar] [CrossRef]
- Santos, S.F.; de Castro, J.F.R.; Ticianelli, E.A. Microstructures and electrode performances of Mg50Ni(50–x)Pdx alloys. Cent. Eur. J. Chem. 2013, 11, 485–491. [Google Scholar] [CrossRef]
- Spassov, T.; Köster, U. Thermal stability and hydriding properties of nanocrystalline melt-spun Mg63Ni30Y7. J. Alloy. Compd. 1998, 279, 279–286. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, C.; Ren, H.; Li, Z.; Hu, F.; Zhao, D. Enhanced hydrogen storage kinetics of nanocrystalline and amorphous Mg2N-type alloy by substituting Ni with Co. Trans. Nonferrous Metals Soc. China 2011, 21, 2002–2009. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, D.; Ren, H.; Guo, S.; Qi, Y.; Wang, X. Enhanced electrochemical hydrogen storage characteristics of nanocrystalline and amorphous Mg20Ni10–xCox (x = 0–4) alloys by melt spinning. Rare Metal. Mater. Eng. 2011, 40, 1146–1151. [Google Scholar] [CrossRef]
- Zhang, Y.; LU, K.; Zhao, D.; Guo, S.; Qi, Y.; Wang, X. Electrochemical hydrogen storage characteristics of nanocrystalline and amorphous Mg2Ni-type alloys prepared by melt-spinning. Trans. Nonferrous Metals Soc. China 2011, 21, 502–511. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, G.; Yang, T.; Hou, Z.; Guo, S.; Qi, Y.; Zhao, D. Electrochemical and hydrogen absorption/desorption properties of nanocrystalline Mg2Ni-type alloys prepared by melt spinning. Rare Metal. Mater. Eng. 2012, 41, 2069–2074. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, T.; Shang, H.; Zhao, C.; Xu, C.; Zhao, D. The electrochemical hydrogen storage characteristics of as-spun nanocrystalline and amorphous Mg20Ni10–xMx (M = Cu,Co,Mn; x = 0–4) alloys. Rare Metals 2013. Available online: http://dx.doi.org/10.1007/s12598-013-0051-z (accessed on 15 July 2013). [Google Scholar]
- Zhang, Y.; Zhao, C.; Yang, T.; Shang, H.; Xu, C.; Zhao, D. Comparative study of electrochemical performances of the as-melt Mg20Ni10–xMx (M = None, Cu, Co, Mn; x = 0, 4) alloys applied to Ni/metal hydride (MH) battery. J. Alloy. Compd. 2013, 555, 131–137. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, Y.; Zhao, D.; Guo, S.; Ma, Z.; Wang, X. An investigation of hydrogen storage kinetics of melt-spun nanocrystalline and amorphous Mg2Ni-type alloys. J. Rare Earths 2011, 29, 87–93. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; Ren, H.; Hou, Z.; Hu, F.; Wang, X. Influences of melt spinning on electrochemical hydrogen storage performance of nanocrystalline and amorphous Mg2Ni-type alloys. J. Cent. South. Univ. Technol. 2011, 18, 1825–1832. [Google Scholar] [CrossRef]
- Huang, L.W.; Elkedim, O.; Nowak, M.; Chassagnon, R.; Jurczyk, M. Mg2–xTixNi (x = 0, 0.5) alloys prepared by mechanical alloying for electrochemical hydrogen storage: Experiments and first-principles calculations. Int. J. Hydrog. Energy 2012, 37, 14248–14256. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, Y.; Wang, Y.; Pu, Z.; Li, L. Electrochemical hydrogen storage properties of Mg2–xAlxNi (x = 0, 0.3, 0.5, 0.7) prepared by hydriding combustion synthesis and mechanical milling. Int. J. Hydrog. Energy 2012, 37, 18140–18147. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, H.; Wang, Y.; Cheng, X.; Tang, Y.; Liu, Z.; Xie, H. Enhanced electrochemical performance of Mg2Ni alloy prepared by rapid quenching in magnetic field. J. Power Sources 2013, 238, 257–264. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, C.; Zhu, J.; Li, L. Structural and electrochemical hydrogen storage properties of Mg2Ni-based alloys. J. Alloy. Compd. 2011, 509, 5309–5314. [Google Scholar] [CrossRef]
- Rousselot, S.; Guay, D.; Roue, L. Comparative study on the structure and electrochemical hydriding properties of MgTi, Mg0.5Ni0.5Ti and MgTi0.5Ni0.5 alloys prepared by high energy ball milling. J. Power Sources 2011, 196, 1561–1568. [Google Scholar] [CrossRef]
- Cao, Z.; Wu, D.; Li, C.; Bian, J.; Zhang, K. Effect of Ni addition on electrochemical properties of Mg-Al hydrogen storage alloy. J. Shenyang Norm. Univ. 2013, 31, 16–20. [Google Scholar]
- Yang, C.; Zhu, Y.; Zhang, W.; Zhu, J.; Li, L. Effects of metal doping on electrochemical properties of Mg-based hydrogen storage alloys. J. Nanjing Univ. Technol. 2011, 33, 52–57. [Google Scholar]
- Anik, M. Improvement of the electrochemical hydrogen storage performance of magnesium based alloys by various additive elements. Int. J. Hydrog. Energy 2012, 37, 1905–1911. [Google Scholar] [CrossRef]
- Huang, L.W.; Elkedim, O.; Nowak, M.; Jurczyk, M.; Cahssagnon, R.; Meng, D.W. Synergistic effects of multiwalled carbon nanotubes and Al on the electrochemical hydrogen storage properties of Mg2Ni-type alloy prepared by mechanical alloying. Int. J. Hydrog. Energy 2012, 37, 1538–1545. [Google Scholar] [CrossRef]
- Xu, J.; Niu, D.; Fan, Y. Electrochemical hydrogen storage performance of Mg2–xAlxNi thin films. J. Power Sources 2012, 198, 383–388. [Google Scholar] [CrossRef]
- Akiba, E.; Iba, H. Hydrogen absorption by Lases phase related BCC solid solution. Intermetallics 1998, 6, 461–470. [Google Scholar] [CrossRef]
- Chai, Y.J.; Zhao, M.S.; Wang, N. Crystal structural and electrochemical properties of Ti0.15Zr0.08V0.35Cr0.10Ni0.30–xMnx (x = 0–0.12) alloys. Mater. Sci. Eng. B 2008, 147, 47–51. [Google Scholar] [CrossRef]
- Guéguen, A.; Joubert, J.M.; Latroche, M. Influence of the C14 Ti35.4V32.3Fe32.3 Laves phase on the hydrogenation properties of the body-centered cubic compd Ti24.5V59.3Fe16.2. J. Alloy. Compd. 2011, 509, 3013–3018. [Google Scholar] [CrossRef]
- Wang, N.; Chai, Y. Electrochemical properties and reaction mechanism of Ti-V multiphase alloy at high temperature. Rare Metal. Mater. Eng. 2011, 40, 1519–1521. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, M. Electrochemical hydrogen storage characteristics of Ti0.10Zr0.15V0.35Cr0.10Ni0.30 − 10% LaNi3 composite and its synergetic effect. Trans. Nonferrous Metals Soc. China 2012, 22, 2000–2006. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, M. Distinct synergistic effect in Ti0.10Zr0.15V0.35Cr0.10Ni0.30 + 1.0 wt % LaNi5 hydrogen storage composite electrode. Int. J. Hydrog. Energy 2012, 37, 3276–3282. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, M. Electrochemical characteristics and synergetic effect of Ti0.10Zr0.15V0.35Cr0.10Ni0.30 – 10 wt % LaNi5 hydrogen storage composite electrode. J. Rare Earths 2012, 30, 146–150. [Google Scholar] [CrossRef]
- Inoue, H.; Koyama, S.; Higuchi, E. Charge-discharge performance of Cr-substituted V-based hydrogen storage alloy negative electrodes for use in nickel-metal hydride batteries. Electrochim.Acta 2012, 59, 23–31. [Google Scholar] [CrossRef]
- Hang, Z.; Xiao, X.; Li, S.; Ge, H.; Chen, C.; Chen, L. Influence of heat treatment on the microstructure and hydrogen storage properties of Ti10V77Cr6Fe6Zr alloy. J. Alloy. Compd. 2012, 529, 128–133. [Google Scholar] [CrossRef]
- Liu, W.; Wang, X.; Hu, W.; Kawabe, Y.; Watada, M.; Wang, L. Electrochemical performance of TiVNi-Quasicrystal and AB3-Type hydrogen storage alloy composite materials. Int. J. Hydrog. Energy 2011, 36, 616–620. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, S.; Wang, L. Ti1.4V0.6Ni quasicrystal and its composites with xV18Ti15Zr18Ni29Cr5Co7Mn alloy used as negative electrode materials for the nickel-metal hydride (Ni-MH) secondary batteries. Mater. Lett. 2012, 79, 122–124. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, S.; Wang, L. Influence of heat treatment on electrochemical properties of Ti1.4V0.6Ni alloy electrode containing icosahedral quasicrystalline phase. Trans. Nonferrous Metals Soc. China 2012, 22, 3034–3038. [Google Scholar] [CrossRef]
- Liu, W.; Liang, F.; Zhang, S.; Lin, J.; Wang, X.; Wang, L. Electrochemical properties of Ti-based Quasicrystal and ZrV2 Laves phase alloy composite materials as negative electrode for Ni-MH secondly batteries. J. Non-Cryst. Solids 2012, 358, 1846–1849. [Google Scholar] [CrossRef]
- Liu, W.; Kawabe, Y.; Liang, F.; Okuyama, R.; Lin, J.; Wang, L. A composite based on Fe substituted TiVNi alloy: Synthesis, structure and electrochemical hydrogen storage property. Intermetallics 2013, 34, 18–22. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Fetcenko, M.A.; Mays, W.; Reichman, B. Structural and electrochemical properties of Ti1.5Zr5.5VxNi10−x. Int. J. Hydrog. Energy 2009, 34, 8695–8706. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Huang, B.; Nei, J.; Fetcenko, M.A. Studies of Ti1.5Zr5.5V0.5(MxNi1−x)9.5 (M = Cr, Mn, Fe, Co, Cu, Al): Part 1. Structural characteristics. J. Alloy. Compd. 2010, 501, 236–244. [Google Scholar] [CrossRef]
- Young, K.; Nei, J.; Huang, B.; Ouchi, T.; Fetcenko, M.A. Studies of Ti1.5Zr5.5V0.5(MxNi1−x)9.5 (M = Cr, Mn, Fe, Co, Cu, Al): Part 2. Hydrogen storage and electrochemical properties. J. Alloy. Compd. 2010, 501, 245–254. [Google Scholar]
- Nei, J.; Young, K.; Salley, S.O.; Ng, K.Y.S. Effects of annealing to Zr8Ni19X2 (X = Ni, Mg, Al, Sc, V, Mn, Co, Sn, La, and Hf): Structural characteristics. J. Alloy. Compd. 2012, 516, 144–152. [Google Scholar] [CrossRef]
- Nei, J.; Young, K.; Salley, S.O.; Ng, K.Y.S. Effects of annealing on Zr8Ni19X2 (X = Ni, Mg, Al, Sc, V, Mn, Co, Sn, La, and Hf): Hydrogen storage and electrochemical properties. Int. J. Hydrog. Energy 2012, 37, 8418–8427. [Google Scholar] [CrossRef]
- Lee, H.; Chourashiya, M.G.; Park, C.; Park, C. Hydrogen storage and electrochemical properties of the Ti0.32Cr0.43–x–yV0.25FexMny (x = 0–0.055, y = 0–0.080) alloys and their composites with MmNi3.99Al0.29Mn0.3Co0.6 alloy. J. Alloy. Compd. 2013, 566, 37–42. [Google Scholar] [CrossRef]
- Huang, H.; Huang, K. Effect of AB5 alloy on electrochemical properties of Mm0.80Mg0.20Ni2.56Co0.50Mn0.14Al0.12 hydrogen storage alloy. Powder Technol. 2012, 221, 365–370. [Google Scholar] [CrossRef]
- Huang, H.; Huang, K.; Chen, D.; Liu, S.; Zhuang, S. The electrochemical properties of MgNi-x wt % TiNi0.56Co0.44 (x = 0, 10, 30, 50) composite alloys. J. Mater. Sci. 2010, 45, 1123–1129. [Google Scholar] [CrossRef]
- Zlatanova, Z.; Spassov, T.; Eggeler, G.; Spassova, M. Synthesis and hydriding/dehydring properties of Mg2Ni-AB (AB = TiNi or TiFe) nanocomposites. Int. J. Hydrog. Energy 2011, 36, 7559–7566. [Google Scholar] [CrossRef]
- Hsu, F.; Lin, C.; Lee, S.; Lin, C.; Bor, H. Effect of Mg3MnNi2 on the electrochemical characteristics of Mg2Ni electrode alloy. J. Power Sources 2010, 195, 374–379. [Google Scholar] [CrossRef]
- Lee, S.; Hsu, F.; Chen, W.; Lin, C.; Lin, J. Influence of Mg3AlNi2 content on the cycling stability of Mg2Ni-Mg3AlNi2 hydrogen storage alloy electrodes. Intermetallics 2011, 19, 1953–1958. [Google Scholar] [CrossRef]
- Lee, S.; Huang, C.; Chou, Y.; Hsu, F. Horng, J. Effects of Co and Ti on the electrode properties of Mg3MnNi2 alloy by ball-milling process. Intermtallics 2013, 34, 122–127. [Google Scholar] [CrossRef]
- He, W.; Zhao, Y.; Huang, J.; Zhang, Y.; Zeng, L. Electrochemical performance of compds Ho6Fe23–xCox (x = 0, 1, 3). J. Rare Earths 2011, 29, 124–128. [Google Scholar] [CrossRef]
- Yao, X.; Ma, R.; Huang, J.; He, J.; He, W.; Zeng, L. Electrochemical performance of Gd-Co-Mn alloys. J. Rare Earths 2012, 30, 540–544. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Young, K.-h.; Nei, J. The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications. Materials 2013, 6, 4574-4608. https://doi.org/10.3390/ma6104574
Young K-h, Nei J. The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications. Materials. 2013; 6(10):4574-4608. https://doi.org/10.3390/ma6104574
Chicago/Turabian StyleYoung, Kwo-hsiung, and Jean Nei. 2013. "The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications" Materials 6, no. 10: 4574-4608. https://doi.org/10.3390/ma6104574
APA StyleYoung, K. -h., & Nei, J. (2013). The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications. Materials, 6(10), 4574-4608. https://doi.org/10.3390/ma6104574