Form-Stable Phase Change Materials Based on Eutectic Mixture of Tetradecanol and Fatty Acids for Building Energy Storage: Preparation and Performance Analysis
Abstract
:1. Introduction
2. Experimental
2.1. Materials
Material | Temperature (°C) | Latent heat (J/g) | ||
---|---|---|---|---|
Melting | Solidification | Melting | Solidification | |
CA | 30.20 | 27.90 | 142.70 | 145.10 |
LA | 43.20 | 40.30 | 177.70 | 180.40 |
MA | 52.10 | 49.50 | 190.00 | 193.20 |
TD | 37.00 | 36.80 | 207.30 | 222.00 |
2.2. Preparation of Form-Stable PCMs
Fatty alcohol | Fatty acids | Mass percentage (wt %) |
---|---|---|
TD | CA | 38.00–62.00 |
TD | LA | 53.60–46.40 |
TD | MA | 71.84–28.16 |
PCMs | Supporting material | Mass percentage (wt %) |
---|---|---|
Eutectic mixtures of fatty acid(CA,LA, MA) and fatty alcohol (TD) | HDPE-EVA | 60.00%–40.00% |
65.00%–35.00% | ||
70.00%–30.00% | ||
75.00%–25.00% | ||
80.00%–20.00% |
2.3. Analysis Method
2.4. Thermal Cycling Test
3. Results and Discussion
3.1. Selection of Proper Mass Percentage of Different Form-Stable PCMs
Form-stable PCMs and corresponding percent | 60%–40% | 65%–35% | 70%–30% | 75%–25% | 80%–20% |
---|---|---|---|---|---|
FS TD-CA PCM | 1.31% | 2.60% | 4.45% | 7.10% | - |
FS TD-LA PCM | 2.38% | 4.23% | 7.57% | 10.10% | - |
FS TD-MA PCM | 3.12% | 5.61% | 8.31% | 11.28% | - |
3.2. Morphology Characterization of the Form-Stable PCMs
3.3. FT-IR Spectroscopy Analysis
3.4. Thermal Properties of PCMs and Their Composites
Materials | Melting | Solidification | ||||||
---|---|---|---|---|---|---|---|---|
Onset temperature (°C) | Peak temperature (°C) | End temperature (°C) | Enthalpy (J/g) | Onset temperature (°C) | Peak temperature (°C) | End temperature (°C) | Enthalpy (J/g) | |
TD-CA | 19.13 | 22.74 | 25.49 | 153.40 | 13.32 | 11.93 | 10.63 | 147.80 |
FS TD-CA PCM | 18.90 | 21.68 | 24.24 | 100.50 | 14.16 | 12.20 | 9.18 | 99.70 |
TD-LA | 24.40 | 26.59 | 27.91 | 162.70 | 24.43 | 21.94 | 18.65 | 146.80 |
FS TD-LA PCM | 24.53 | 27.64 | 30.18 | 90.20 | 24.92 | 22.85 | 19.88 | 88.70 |
TD-MA | 34.45 | 36.46 | 38.05 | 208.00 | 31.98 | 30.51 | 29.43 | 206.20 |
FS TD-MA PCM | 33.15 | 35.08 | 37.75 | 128.60 | 30.72 | 29.09 | 27.63 | 125.70 |
3.5. Thermal Stability of Form-Stable PCMs
Materials | Melting | Solidification | |||||
---|---|---|---|---|---|---|---|
Onset temperature (°C) | End temperature (°C) | Enthalpy (J/g) | Onset temperature (°C) | End temperature (°C) | Enthalpy (J/g) | ||
FS TD-CA PCM | 0 cycling | 18.90 | 24.24 | 100.50 | 14.16 | 9.18 | 99.70 |
500 cycling | 18.47 | 23.34 | 98.70 | 14.66 | 9.53 | 96.40 | |
1000 cycling | 18.12 | 22.90 | 96.30 | 15.40 | 10.18 | 94.50 | |
FS TD-LA PCM | 0 cycling | 24.53 | 30.18 | 90.20 | 24.92 | 19.88 | 88.70 |
500 cycling | 23.62 | 29.69 | 87.60. | 25.93 | 20.67 | 86.40 | |
1000 cycling | 23.22 | 29.28 | 85.70 | 26.23 | 21.12 | 85.10 | |
FS TD-MA PCM | 0 cycling | 33.15 | 37.75 | 128.60 | 30.72 | 27.63 | 125.70 |
500 cycling | 32.81 | 37.28 | 125.30 | 31.11 | 28.00 | 123.40 | |
1000 cycling | 32.65 | 37.04 | 123.50 | 31.72 | 28.55 | 121.70 |
3.6. Thermal Storage and Release Performance of the Form-Stable PCMs
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Farid, M.M.; Khudhair, A.M.; Razack, S.A.K.; Al-Hallaj, S. A review on phase change energy storage: Materials and applications. Energy Conv. Manag. 2004, 45, 1597–1615. [Google Scholar] [CrossRef]
- Tyagi, V.V.; Buddhi, D. PCM thermal storage in buildings: A state of art. Renew. Sust. Energ. Rev. 2007, 11, 1146–1166. [Google Scholar] [CrossRef]
- Kuznik, F.; David, D.; Johannes, K.; Roux, J.J. A review on phase change materials integrated in building walls. Renew. Sust. Energ. Rev. 2011, 15, 379–391. [Google Scholar] [CrossRef]
- Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sust. Energ. Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Sari, A.; Kaygusuz, K. Thermal performance of a eutectic mixture of lauric and stearic acids as PCM encapsulated in the annulus of two concentric pipes. Sol. Energy 2002, 72, 493–504. [Google Scholar] [CrossRef]
- Sari, A.; Karaipekli, A. Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage. Sol. Energy Mater. Sol. Cells 2009, 93, 571–576. [Google Scholar] [CrossRef]
- Shilei, L.; Neng, Z.; Feng, G.H. Eutectic mixtures of capric acid and lauric acid applied in building wallboards for heat energy storage. Energy Build. 2006, 38, 708–711. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, T.D.; Feng, H.X.; Zhang, H. Stearic acid/polymethylmethacrylate composite as form-stable phase change materials for latent heat thermal energy storage. Renew. Energy 2011, 36, 1814–1820. [Google Scholar] [CrossRef]
- Gandolfo, F.G.; Bot, A.; Floter, E. Phase diagram of mixtures of stearic acid and stearyl alcohol. Thermochim. Acta 2003, 404, 9–17. [Google Scholar] [CrossRef]
- Zuo, J.G.; Li, W.Z.; Weng, L.D. Thermal performance of caprylic acid/1-dodecanol eutectic mixture as phase change material (PCM). Energy Build. 2011, 43, 207–210. [Google Scholar] [CrossRef]
- Zeng, J.L.; Cao, Z.; Yang, D.W.; Xu, F.; Sun, L.X.; Zhang, L.; Zhang, X.F. Phase diagram of palmitic acid-tetradecanol mixtures obtained by DSC experiments. J. Therm. Anal. Calorim. 2009, 95, 501–505. [Google Scholar] [CrossRef]
- Zuo, J.G.; Li, W.Z.; Weng, L.D. Thermal properties of lauric acid/1-tetradecanol binary system for energy storage. Appl. Therm. Eng. 2011, 31, 1352–1355. [Google Scholar] [CrossRef]
- Cai, Y.B.; Hu, Y.; Song, L.; Lu, H.D.; Chen, Z.Y.; Fan, W.C. Preparation and characterizations of HDPE-EVA alloy/OMT nanocomposites/paraffin compounds as a shape stabilized phase change thermal energy storage material. Thermochim. Acta 2006, 451, 44–51. [Google Scholar] [CrossRef]
- Kenisarin, M.M.; Kenisarina, K.M. Form-stable phase change materials for thermal energy storage. Renew. Sust. Energ. Rev. 2012, 16, 1999–2040. [Google Scholar] [CrossRef]
- Mei, D.D.; Zhang, B.; Liu, R.C.; Zhang, Y.T.; Liu, J.D. Preparation of capric acid/halloysite nanotube composite as form-stable phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells 2011, 95, 2772–2777. [Google Scholar] [CrossRef]
- Sari, A. Form-stable paraffin/high density polyethylene composites as solid-liquid phase change material for thermal energy storage: Preparation and thermal properties. Energy Conv. Manag. 2004, 45, 2033–2042. [Google Scholar] [CrossRef]
- Inaba, H.; Tu, P. Evaluation of thermophysical characteristics on shape-stabilized paraffin as a solid–liquid phase-change material. Heat Mass Transf. 1997, 32, 307–312. [Google Scholar] [CrossRef]
- Cai, Y.B.; Hu, Y.; Song, L.; Kong, Q.H.; Yang, R.; Zhang, Y.P.; Chen, Z.Y.; Fan, W.C. Preparation and flammability of high density polyethylene/paraffin/organophilic montmorillonite hybrids as a form stable phase change material. Energy Conv. Manag. 2007, 48, 462–469. [Google Scholar] [CrossRef]
- Cai, Y.B.; Wei, Q.F.; Huang, F.L.; Gao, W.D. Preparation and properties studies of halogen-free flame retardant form-stable phase change materials based on paraffin/high density polyethylene composites. Appl. Energy 2008, 85, 765–775. [Google Scholar] [CrossRef]
- Liu, M.; Saman, W.; Bruno, F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew. Sustain. Energy Rev. 2012, 16, 2118–2132. [Google Scholar] [CrossRef]
- Darkwa, J.; Zhou, T. Enhanced laminated composite phase change material for energy storage. Energy Conv. Manag. 2011, 52, 810–815. [Google Scholar] [CrossRef]
- Ho, C.J.; Gao, J.Y. Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material. Int. Commun. Heat Mass Transf. 2009, 36, 467–470. [Google Scholar] [CrossRef]
- Zeng, J.L.; Sun, L.X.; Xu, F.; Tan, Z.C.; Zhang, Z.H.; Zhang, J.; Zhang, T. Study of a PCM based energy storage system containing Ag nanoparticles. J. Therm. Anal. Calorim. 2007, 87, 369–373. [Google Scholar] [CrossRef]
- Sari, A.; Karaipekli, A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl. Therm. Eng. 2007, 27, 1271–1277. [Google Scholar] [CrossRef]
- Mettawee, E.B.S.; Assassa, G.M.R. Thermal conductivity enhancement in a latent heat storage system. Sol. Energy 2007, 81, 839–845. [Google Scholar] [CrossRef]
- Li, M.; Wu, Z.S.; Kao, H.T. Study on preparation, structure and thermal energy storage property of capric-palmitic acid/attapulgite composite phase change materials. Appl. Energy 2011, 88, 3125–3132. [Google Scholar] [CrossRef]
- Sari, A.; Bicer, A. Preparation and thermal energy storage properties of building material-based composites as novel form-stable PCMs. Energy Build. 2012, 51, 73–83. [Google Scholar] [CrossRef]
- Kaygusuz, K.; Sari, A. High density polyethylene/paraffin composites as form-stable phase change material for thermal energy storage. Energy Sources Part A Recovery Utili. Environ. Eff. 2007, 29, 261–270. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Huang, J.; Lu, S.; Kong, X.; Liu, S.; Li, Y. Form-Stable Phase Change Materials Based on Eutectic Mixture of Tetradecanol and Fatty Acids for Building Energy Storage: Preparation and Performance Analysis. Materials 2013, 6, 4758-4775. https://doi.org/10.3390/ma6104758
Huang J, Lu S, Kong X, Liu S, Li Y. Form-Stable Phase Change Materials Based on Eutectic Mixture of Tetradecanol and Fatty Acids for Building Energy Storage: Preparation and Performance Analysis. Materials. 2013; 6(10):4758-4775. https://doi.org/10.3390/ma6104758
Chicago/Turabian StyleHuang, Jingyu, Shilei Lu, Xiangfei Kong, Shangbao Liu, and Yiran Li. 2013. "Form-Stable Phase Change Materials Based on Eutectic Mixture of Tetradecanol and Fatty Acids for Building Energy Storage: Preparation and Performance Analysis" Materials 6, no. 10: 4758-4775. https://doi.org/10.3390/ma6104758
APA StyleHuang, J., Lu, S., Kong, X., Liu, S., & Li, Y. (2013). Form-Stable Phase Change Materials Based on Eutectic Mixture of Tetradecanol and Fatty Acids for Building Energy Storage: Preparation and Performance Analysis. Materials, 6(10), 4758-4775. https://doi.org/10.3390/ma6104758