Novel Ti–Zr–Hf–Fe Nanostructured Alloy for Biomedical Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Microstructure
2.2. Mechanical Properties
Sample | v | EAcoust (GPa) | G (GPa) | K (GPa) |
---|---|---|---|---|
Ti40Zr20Hf20Fe20 | 0.359 ± 0.001 | 102.2 ± 0.3 | 37.6 ± 0.3 | 132.3 ± 1.7 |
Ti–6Al–4V | 0.326 ± 0.003 | 111.5 ± 1.1 | 42.0 ± 0.4 | 106.6 ± 1.1 |
Sample | H (GPa) | Er (GPa) | H/Er | H3/Er2 (GPa) | Uel/Utot | Upl/Utot |
---|---|---|---|---|---|---|
Ti40Zr20Hf20Fe20 | 8.7 ± 0.2 | 104 ± 3 | 0.083 ± 0.003 | 0.060 ± 0.006 | 0.554 ± 0.019 | 0.446 ± 0.016 |
Ti–6Al–4V | 5.0 ± 0.1 | 121 ± 3 | 0.041 ± 0.001 | 0.009 ± 0.001 | 0.254 ± 0.005 | 0.746 ± 0.014 |
2.3. Corrosion Behavior
Sample | jcorr (A·cm−2) | Ecorr (V) | Rcorr (Ω·cm2) |
---|---|---|---|
Ti40Zr20Hf20Fe20 | 9.1 × 10−7 | −0.197 | 1.4 × 104 |
Ti–6Al–4V | 2.1 × 10−6 | −0.168 | 6.9 × 103 |
2.4. Biological Tests
2.4.1. Cell Viability
2.4.2. Cell Adhesion and Morphology
2.4.3. Cell Differentiation
3. Experimental Section
3.1. Material and Sample Preparation
3.2. Structural Characterization
3.3. Mechanical Behavior
3.4. Corrosion Characterization
3.5. Biological Tests
3.5.1. Cell Culture
3.5.2. Cell Viability Assay
3.5.3. Scanning Electron Microscope (SEM) Analysis of Cells
3.5.4. Cell Adhesion Analysis
3.5.5. Cell Differentiation Assay
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Mei, J. Titanium-Based Bulk Metallic Glasses: Glass Forming Ability and Mechanical Behavior. Ph.D. Thesis, Joseph Fourier University, Grenoble, France, Northwestern Polytechnical University, Xi’an, China, November 2009. [Google Scholar]
- Niinomi, M. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci. Technol. Adv. Mater. 2003, 4, 445–454. [Google Scholar] [CrossRef]
- Gleiter, H. Nanoglasses: A new kind of noncrystalline materials. Beilstein J. Nanotechnol. 2013, 4, 517–533. [Google Scholar] [CrossRef] [PubMed]
- Suryanarayana, C.; Koch, C.C. Nanocrystalline materials—Current research and future Directions. Hyperf. Interact. 2000, 130, 5–44. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Niinomi, M. Microstructures and mechanical properties of Ti–50 mass % Ta alloy for biomedical application. J. Alloys Compd. 2008, 466, 535–542. [Google Scholar] [CrossRef]
- Nouri, A.; Hodgson, P.D.; Wen, C.E. Effect of process control agent on the porous structure and mechanical properties of a biomedical Ti–Sn–Nb alloy produced by powder metallurgy. Acta Biomater. 2010, 6, 1630–1639. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.J.; Chen, Y.Y.; Liu, Z.G.; Kong, F.T. The microstructure and properties of Ti–Mo–Nb alloys for biomedical application. J. Alloys Compd. 2008, 453, 320–324. [Google Scholar]
- Elias, L.M.; Schneidera, S.G.; Schneidera, S.; Silva, H.M.; Malvisi, F. Microstructural and mechanical characterization of biomedical Ti–Nb–Zr(–Ta) alloys. Mater. Sci. Eng. 2006, 432, 108–112. [Google Scholar] [CrossRef]
- Naga, S.; Banerjee, R.; Frasera, H.L. Microstructural evolution and strengthening mechanisms in Ti–Nb–Zr–Ta, Ti–Mo–Zr–Fe and Ti–15Mo biocompatible alloys. Mater. Sci. Eng. 2005, 25, 357–362. [Google Scholar] [CrossRef]
- Han, J.H.; Park, D.H.; Bang, C.W.; Yi, S.; Lee, W.H.; Kim, K.B. Sn effect on microstructure and mechanical properties of ultrafine eutectic Ti–Fe–Sn alloys. J. Alloys Compd. 2009, 483, 44–46. [Google Scholar] [CrossRef]
- Majumdar, P.; Singh, S.B.; Chakraborty, M. The influence of heat treatment and role of boron on sliding wear behavior of b-type Ti–35Nb–7.2Zr–5.7Ta alloy in dry condition and in simulated body fluids. J. Mech. Behav. Biomed. Mater. 2012, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Louzguine-Luzgin, D.V.; Ranganathan, S.; Inoue, A. Glassy and icosahedral phases in rapidly solidified Ti–Zr–Hf–(Fe, Co or Ni) alloys. J. NonCryst. Solids 2005, 351, 2547–2551. [Google Scholar] [CrossRef]
- Fornell, J.; Suriñach, S.; Baró, M.D.; Sort, J. Unconventional elastic properties, deformation behavior and fracture characteristics of newly developed rare earth bulk metallic glasses. Intermetallics 2009, 17, 1090–1097. [Google Scholar] [CrossRef]
- Wang, W.H.; Bai, H.Y.; Luo, J.L.; Wang, R.J.; Jin, D. Supersoftening of transverse phonons in Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass. Phys. Rev. 2000, 62, 25–28. [Google Scholar] [CrossRef]
- Ibrahim, K.; Mhaede, M.; Wagner, L. Effect of annealing temperature on microstructure and mechanical properties of hot swaged cp-Ti produced by investment casting. J. Mater. Eng. Perform. 2012, 21, 114–118. [Google Scholar] [CrossRef]
- Sun, F.S.; Cao, C.X.; Kim, S.E.; Lee, Y.T.; Yana, M.G. Mechanism of beta stabilizers in a TiAl alloy. Metall. Mater. Trans. 2001, 32, 1573–1589. [Google Scholar] [CrossRef]
- Joshi, V.A. Titanium Alloys: An Atlas of Structures and Fracture Features; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Liu, B.; Zheng, Y.F. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomater. 2011, 7, 1407–1420. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.G.; Choe, H.C. Nanostructure and corrosion behaviors of nanotube formed Ti–Zr alloy. Trans. Nonferrous Met. Soc. China 2009, 19, 1005–1008. [Google Scholar] [CrossRef]
- Sun, B.B.; Sui, M.L.; Wang, Y.M.; He, G.; Eckert, J.; Ma, E. Ultrafine composite microstructure in a bulk Ti alloy for high strength, strain hardening and tensile ductility. Acta Mater. 2006, 54, 1349–1357. [Google Scholar] [CrossRef]
- Hynowska, A.; Pellicer, E.; Fornell, J.; González, S.; Steenberge, N.; Suriñach, S.; Gebert, A.; Calin, M.; Eckert, J.; Baró, M.D.; et al. Nanostructured β-phase Ti–31.0Fe–9.0Sn and sub-μm structured Ti–39.3Nb–13.3Zr–10.7Ta alloys for biomedical applications: Microstructure benefits on the mechanical and corrosion performances. Mater. Sci. Eng. 2012, 32, 2418–2425. [Google Scholar] [CrossRef]
- Manika, I.; Maniks, J. Size effects in micro- and nanoscale indentation. Acta Mater. 2006, 54, 2049–2056. [Google Scholar] [CrossRef]
- Gerberich, W.W.; Tymiak, N.I.; Grunlan, J.C.; Horstemeyer, M.F.; Baskes, M.I. Interpretations of indentation size effects. J. Appl. Mech. 2002, 69, 433–442. [Google Scholar] [CrossRef]
- Li, H.; Ghosh, A.; Han, Y.N.; Bradt, R.C. The frictional component of the indent of the indentation size effect in low load microhardness testing. J. Mater. Res. 1993, 8, 1028–1032. [Google Scholar] [CrossRef]
- Nix, W.D.; Gao, H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 1998, 46, 411–425. [Google Scholar] [CrossRef]
- Huang, Y.; Qu, S.; Hwang, K.C.; Li, M.; Gao, H. A conventional theory of mechanism-based strain gradient plasticity. Int. J. Plast. 2004, 20, 753–783. [Google Scholar] [CrossRef]
- Pirich, R.G. Directional solidification and characterization of near eutectic Sm2Co17/Co alloys. Metall. Trans. 1986, 17, 1149–1155. [Google Scholar] [CrossRef]
- Hertzberg, R.W. Deformation and Fracture Mechanics of Engineering Materials; John Wiley & Sons: New York, NY, USA, 1996. [Google Scholar]
- Smith, W.F.; Hashemi, J. Foundations of Materials Science and Engineering; McGraw-Hill: Boston, MA, USA, 2006. [Google Scholar]
- Hall, E.O. The deformation and ageing of mild steel III, Discussion of results. Proc. Phys. Soc. 1951, 64, 747–753. [Google Scholar] [CrossRef]
- Petch, N.J. The cleavage strength of polycrystals. J. Iron Steel Res. Inst. 1953, 174, 25–28. [Google Scholar]
- Zhou, Y.L.; Niinomi, M.; Akahori, T. Dynamic Young’s modulus and mechanical properties of Ti-Hf alloys. Mater. Trans. 2004, 45, 1549–1554. [Google Scholar] [CrossRef]
- Fornell, J.; Steenberge, N.; Varea, A.; Rossinyol, E.; Pellicer, E.; Suriñach, S.; Baró, M.D.; Sort, J. Enhanced mechanical properties and in vitro in vitro corrosion behavior of amorphous and devitrified Ti40Zr10Cu38Pd12 metallic glass. J. Mech. Behav. Biomed. Mater. 2011, 4, 1709–1717. [Google Scholar] [CrossRef] [PubMed]
- Leyland, A.; Matthews, A. On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behaviour. Wear 2000, 246, 1–11. [Google Scholar] [CrossRef]
- Koch, C.C. Nanostructured Materials, Processing, Properties and Applications; William Andrew publishing: New York, NY, USA, 2007. [Google Scholar]
- Ma, F.Y. Pitting Corrosion; Intech: New York, NY, USA, 2012. [Google Scholar]
- Rosenbloom, S.N.; Corbett, R.A. An assessment of ASTM F 2129 electrochemical testing of small medical implants—Lessons learned. In Proceedings of the NACE Corrosion Conference & Exposition, Nashville, TN, USA, 11–15 March 2007.
- Wang, B.L.; Li, L.; Zheng, Y.F. In vitro cytotoxicity and hemocompatibility studies of Ti–Nb, Ti–Nb–Zr and Ti–Nb–Hf biomedical shape memory alloys. Biomed. Mater. 2010, 5, 044102:1–044102:7. [Google Scholar]
- Bao, Y.W.; Wang, W.; Zhou, Y.C. Investigation of the relationship between elastic modulus and hardness based on depth-sensing indentation measurements. Acta Mater. 2004, 52, 5397–5404. [Google Scholar] [CrossRef]
- McCafferty, E. Validation of corrosion rates measured by the Tafel extrapolation method. Corr. Sci. 2005, 47, 3202–3215. [Google Scholar] [CrossRef]
- Goodfellow Homepage. Available online: http://www.goodfellow.com/ (accessed on 23 October 2013).
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hynowska, A.; Blanquer, A.; Pellicer, E.; Fornell, J.; Suriñach, S.; Baró, M.D.; González, S.; Ibáñez, E.; Barrios, L.; Nogués, C.; et al. Novel Ti–Zr–Hf–Fe Nanostructured Alloy for Biomedical Applications. Materials 2013, 6, 4930-4945. https://doi.org/10.3390/ma6114930
Hynowska A, Blanquer A, Pellicer E, Fornell J, Suriñach S, Baró MD, González S, Ibáñez E, Barrios L, Nogués C, et al. Novel Ti–Zr–Hf–Fe Nanostructured Alloy for Biomedical Applications. Materials. 2013; 6(11):4930-4945. https://doi.org/10.3390/ma6114930
Chicago/Turabian StyleHynowska, Anna, Andreu Blanquer, Eva Pellicer, Jordina Fornell, Santiago Suriñach, Maria Dolors Baró, Sergio González, Elena Ibáñez, Lleonard Barrios, Carme Nogués, and et al. 2013. "Novel Ti–Zr–Hf–Fe Nanostructured Alloy for Biomedical Applications" Materials 6, no. 11: 4930-4945. https://doi.org/10.3390/ma6114930
APA StyleHynowska, A., Blanquer, A., Pellicer, E., Fornell, J., Suriñach, S., Baró, M. D., González, S., Ibáñez, E., Barrios, L., Nogués, C., & Sort, J. (2013). Novel Ti–Zr–Hf–Fe Nanostructured Alloy for Biomedical Applications. Materials, 6(11), 4930-4945. https://doi.org/10.3390/ma6114930