A Perspective on the Flame Spray Synthesis of Photocatalyst Nanoparticles
Abstract
:1. Flame Spray Synthesis of Nanoparticles
2. Simple Metal Oxide Photocatalysts—Starting from the Basics
3. In situ Flame-doping of Photocatalysts—A Small Addition Makes Big Changes
4. Flame-Made Mixed Metal Oxide Photocatalysts—Trying out Complexities
5. Flame Deposition of Noble Metals on Oxide Photocatalysts
6. Concluding Remarks
Acknowledgements
Conflict of Interest
References
- Pratsinis, S.E. Flame Aerosol Synthesis of Ceramic Powders. Prog. Energy Combust. Sci. 1998, 24, 197–219. [Google Scholar] [CrossRef]
- Chemical Economics Handbook; SRI International: Merlo Park, CA, USA, 2001.
- Ollis, D.F.; Al-Ekabi, H. Photocatalytic Purification and Treatment of Water and Air; Elsevier Science Ltd.: Amsterdam, the Netherlands, 1993. [Google Scholar]
- Teoh, W.Y.; Scott, J.A.; Amal, R. Progress in Heterogeneous Photocatalysis: From Classical Radical Chemistry to Engineering Nanomaterials and Solar Reactors. J. Phys. Chem. Lett. 2012, 3, 629–639. [Google Scholar] [CrossRef]
- Kraeutler, B.; Bard, A.J. Heterogeneous Photocatalytic Synthesis of Methane from Acetic Acid—New Kolbe Reaction Pathway. J. Am. Chem. Soc. 1978, 100, 2239–2240. [Google Scholar] [CrossRef]
- Abe, T.; Suzuki, E.; Nagoshi, K.; Miyashita, K.; Kaneko, M. Electron Source in Photoinduced Hydrogen Production on Pt-supported TiO2 Particles. J. Phys. Chem. B 1999, 103, 1119–1123. [Google Scholar] [CrossRef]
- Ito, S.; Chen, P.; Comte, P.; Nazeeruddin, M.K.; Liska, P.; Pechy, P.; Gratzel, M. Fabrication of Screen-Printing Pastes from TiO2 Powders for Dye-Sensitised Solar Cells. Prog. Photovolt. 2007, 15, 603–612. [Google Scholar] [CrossRef]
- Hurum, D.C.; Agrios, A.G.; Gray, K.A.; Rajh, T.; Thurnauer, M.C. Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR. J. Phys. Chem. B 2003, 107, 4545–4549. [Google Scholar] [CrossRef]
- Li, G.; Chen, L.; Graham, M.E.; Gray, K.A. A Comparison of Mixed Phase Titania Photocatalysts Prepared by Physical and Chemical Methods: The Importance of the Solid–Solid Interface. J. Mol. Catal. A Chem. 2007, 275, 30–35. [Google Scholar] [CrossRef]
- Ohtani, B.; Prieto-Mahaney, O.O.; Lin, D.; Abe, R. What is Degussa (Evonik) P25? Crystalline Composition Analysis, Reconstruction from Isolated Pure Particles and Photocatalytic Activity Test. J. Photochem. Photobiol. A. 2010, 218, 179–182. [Google Scholar] [CrossRef]
- Sokolowski, M.; Sokolowska, A.; Michalski, A.; Gokieli, B. The “In-Flame-Reaction” Method for Al2O3 Aerosol Formation. J. Aerosol Sci. 1977, 8, 219–230. [Google Scholar] [CrossRef]
- Laine, R.M.; Hinklin, T.; Williams, G.; Rand, S.C. Low-Cost Nanopowders for Phosphor and Laser Applications by Flame Spray Pyrolysis. Mater. Sci. Forum 2000, 343–346, 500–510. [Google Scholar] [CrossRef]
- Strobel, R.; Pratsinis, S.E. Flame Aerosol Synthesis of Smart Nanostructured Materials. J. Mater. Chem. 2007, 17, 4743–4756. [Google Scholar] [CrossRef]
- Wegner, K.; Schimmoeller, B.; Thiebaut, B.; Fernandez, C.; Rao, T.N. Pilot Plants for Industrial Nanoparticle Production by Flame Spray Pyrolysis. KONA Powder Part. J. 2011, 29, 251–265. [Google Scholar] [CrossRef]
- Teoh, W.Y.; Amal, R.; Mädler, L. Flame Spray Pyrolysis: An Enabling Technology for Nanoparticles Design and Fabrication. Nanoscale 2010, 2, 1324–1347. [Google Scholar] [CrossRef] [PubMed]
- Jossen, R.; Pratsinis, S.E.; Stark, W.J.; Mädler, L. Criteria for Flame-Spray Synthesis of Hollow, Shell-like, or Inhomogeneous Oxides. J. Am. Ceram. Soc. 2005, 88, 1388–1393. [Google Scholar] [CrossRef]
- Bickmore, C.R.; Waldner, K.F.; Treadwell, D.R.; Laine, R.M. Ultrafine Spinel Powders by Flame Spray Pyrolysis of a Magnesium Aluminum Double Alkoxide. J. Am. Ceram. Soc. 1996, 79, 1419–1423. [Google Scholar] [CrossRef]
- Mädler, L.; Krumeich, F.; Burtscher, P.; Moszner, N. Visibly Transparent and Radiopaque Inorganic-Organic Composites from Flame-Made Mixed-Oxide Fillers. J. Nanopart. Res. 2006, 8, 323–333. [Google Scholar] [CrossRef]
- Mädler, L. Liquid-Fed Aerosol Reactors for One-Step Synthesis of Nanostructured Particles. KONA 2004, 22, 107–120. [Google Scholar] [CrossRef]
- Beaucage, G.; Kammler, H.K.; Mueller, R.; Strobel, R.; Agashe, N.; Pratsinis, S.E.; Narayanan, T. Probing the Dynamics of Nanoparticle Growth in a Flame Using Synchrotron Radiation. Nat. Mater. 2004, 3, 370–373. [Google Scholar] [CrossRef] [PubMed]
- Jossen, R. Controlled synhesis of mixed oxide nanoparticles by flame spray pyrolysis. Ph.D. Dissertation, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, 2005. [Google Scholar]
- Schulz, H.; Stark, W.J.; Maciejewski, M.; Pratsinis, S.E.; Baiker, A. Flame-Made Nanocrystalline Ceria/Zirconia Doped with Alumina or Silica: Structural Properties and Enhanced Oxygen Exchange Capacity. J. Mater. Chem. 2003, 13, 2979–2984. [Google Scholar] [CrossRef]
- Kydd, R.; Teoh, W.Y.; Wong, K.; Wang, Y.; Scott, J.; Yu, A.B.; Zou, J.; Amal, R. Flame-Synthesized Ceria-Supported Copper Dimers for Preferential Oxidation of CO. Adv. Funct. Mater. 2009, 19, 369–377. [Google Scholar] [CrossRef]
- Kydd, R.; Ferri, D.; Hug, P.; Scott, J.; Teoh, W.Y.; Amal, R. Temperature-Induced Evolution of Reaction Sites and Mechanisms During Preferential Oxidation of CO. J. Catal. 2011, 277, 64–71. [Google Scholar] [CrossRef]
- Zhang, R.; Teoh, W.Y.; Amal, R.; Chen, B.; Kaliaguine, S. Catalytic Reduction of NO by CO over Cu/CexZr1−xO2 prepared by flame synthesis. J. Catal. 2010, 272, 210–219. [Google Scholar] [CrossRef]
- Height, M.J.; Mädler, L.; Pratsinis, S.E.; Krumeich, F. Nanorods of ZnO Made by Flame Spray Pyrolysis. Chem. Mater. 2006, 18, 572–578. [Google Scholar] [CrossRef]
- Gunawan, C.; Teoh, W.Y.; Marquis, C.P.; Lifia, J.; Amal, R. Reversible Antimicrobial Photoswitching in Nanosilver. Small 2009, 5, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Strobel, R.; Krumeich, F.; Stark, W.J.; Pratsinis, S.E.; Baiker, A. Flame Spray Synthesis of Pd/Al2O3 Catalysts and Their Behavior in Enantioselective Hydrogenation. J. Catal. 2004, 222, 307–314. [Google Scholar] [CrossRef]
- Hotz, N.; Stutz, M.J.; Loher, S.; Stark, W.J.; Poulikakos, D. Syngas production from butane using a flame-made Rh/Ce0.5Zr0.5O2 catalyst. Appl. Catal. B 2007, 73, 336–344. [Google Scholar] [CrossRef]
- Minnermann, M.; Pokhrel, S.; Thiel, K.; Birkenstock, J.; Laurus, T.; Zargham, A.; Flege, J.-I.; Zielasek, V.; Piskorska-Hommel, E.; Falta, J.; et al. Role of Palladium in Iron Based Fischer—Tropsch Catalysts Prepared by Flame Spray Pyrolysis. J. Phys. Chem. C 2011, 115, 1302–1310. [Google Scholar] [CrossRef]
- Tani, T.; Mädler, L.; Pratsinis, S.E. Synthesis of Zinc Oxide/Silica Composite Nanoparticles by Flame Spray Pyrolysis. J. Mater. Sci. 2002, 37, 4627–4632. [Google Scholar] [CrossRef]
- Kim, M.; Laine, R.M. One-Step Synthesis of Core-Shell (Ce0.7Zr0.3O2)x(Al2O3)1−x [(Ce0.7Zr0.3O2)@Al2O3] Nanopowders via Liquid-Feed Flame Spray Pyrolysis (LF-FSP). J. Am. Chem. Soc. 2009, 131, 9220–9229. [Google Scholar]
- Li, D.; Teoh, W.Y.; Selomulya, C.; Woodward, R.C.; Amal, R.; Rosche, B. Flame-Sprayed Superparamagnetic Bare and Silica-Coated Maghemite Nanoparticles: Synthesis, Characterization, and Protein Adsorption−Desorption. Chem. Mater. 2006, 18, 6403–6413. [Google Scholar]
- Li, D.; Teoh, W.Y.; Woodward, R.C.; Cashion, J.D.; Selomulya, C.; Amal, R. Evolution of Morphology and Magnetic Properties in Silica/Maghemite Nanocomposites. J. Phys. Chem. C 2009, 113, 12040–12047. [Google Scholar] [CrossRef]
- Feng, X.; Sayle, D.C.; Wang, Z.L.; Paras, M.S.; Santora, B.; Sutorik, A.C.; Sayle, T.X.T.; Yang, Y.; Ding, Y.; Wang, X.; et al. Converting Ceria Polyhedral Nanoparticles into Single-Crystal Nanospheres. Science 2006, 312, 1504–1508. [Google Scholar] [CrossRef]
- Ernst, F.O.; Buchel, R.; Strobel, R.; Pratsinis, S.E. One-Step Flame-Synthesis of Carbon-Embedded and -Supported Platinum Clusters. Chem. Mater. 2008, 20, 2117–2123. [Google Scholar] [CrossRef]
- Ernst, F.O.; Kammler, H.K.; Roessler, A.; Pratsinis, S.E.; Stark, W.J.; Ufheil, U.; Novak, P. Electrochemically Active Flame-Made Nanosized Spinels: LiMn2O4, Li4Ti5O12 and LiFe5O8. Mater. Chem. Phys. 2007, 101, 372–378. [Google Scholar] [CrossRef]
- Chiarello, G.L.; Grunwaldt, J.-D.; Ferri, D.; Krumeich, F.; Oliva, C.; Forni, L.; Baiker, A. Flame Synthesised LaCoO3-Supported Pd: 1. Structure, Thermal Stability and Reducibility. J. Catal. 2007, 252, 127–136. [Google Scholar] [CrossRef]
- Strobel, R.; Piacentini, M.; Mädler, L.; Maciejewski, M.; Baiker, A.; Pratsinis, S.E. Two-Nozzle Flame Synthesis of Pt/Ba/Al2O3 for NOx Storage. Chem. Mater. 2006, 18, 2532–2437. [Google Scholar] [CrossRef]
- Stark, W.J.; Mädler, L.; Maciejewski, M.; Pratsinis, S.E.; Baiker, A. Flame Synthesis of Nanocrystalline Ceria-Zirconia: Effect of Carrier Liquid. Chem. Commun. 2003. [Google Scholar] [CrossRef]
- Schimmoeller, B.; Pratsinis, S.E.; Baiker, A. Flame Aerosol Synthesis of Metal Oxide Catalysts with Unprecedented Structural and Catalytic Properties. ChemCatChem 2011, 3, 1234–1256. [Google Scholar] [CrossRef]
- Emeline, A.V.; Sheremetyeva, N.V.; Khomchenko, N.V.; Kuzmin, G.N.; Ryabchuk, V.K.; Teoh, W.Y.; Amal, R. Spectroscopic Studies of Pristine and Fluorinated Nano-ZrO2 in Photostimulated Heterogeneous Processes. J. Phys. Chem. C 2009, 113, 4566–4574. [Google Scholar] [CrossRef]
- Kho, Y.K.; Teoh, W.Y.; Iwase, A.; Mädler, L.; Kudo, A.; Amal, R. Flame Preparation of Visible-Light-Responsive BiVO4 Oxygen Evolution Photocatalysts with Subsequent Activation via Aqueous Route. ACS Appl. Mater. Interfaces 2011, 3, 1997–2004. [Google Scholar] [CrossRef] [PubMed]
- Konta, R.; Ishii, T.; Kato, H.; Kudo, A. Photocatalytic Activities of Noble Metal Ion-doped SrTiO3 under Visible Light Irradiation. J. Phys. Chem. B 2004, 108, 8992–8995. [Google Scholar] [CrossRef]
- Kho, Y.K.; Iwase, A.; Teoh, W.Y.; Mädler, L.; Kudo, A.; Amal, R. Photocatalytic H2 Evolution over TiO2 Nanoparticles. The Synergistic Effect of Anatase and Rutile. J. Phys. Chem. C 2010, 114, 2821–2829. [Google Scholar] [CrossRef]
- Liu, G.; Yu, J.C.; Lu, G.Q.; Cheng, H.M. Crystal Facet Engineering of Semiconductor Photocatalysts: Motivations, Advances and Unique Properties. Chem. Commun. 2011, 47, 6763–6783. [Google Scholar] [CrossRef]
- Teoh, W.Y.; Mädler, L.; Beydoun, D.; Pratsinis, S.E.; Amal, R. Direct (One-Step) Synthesis of TiO2 and Pt/TiO2 Nanoparticles for Photocatalytic Mineralisation of Sucrose. Chem. Eng. Sci. 2005, 60, 5852–5861. [Google Scholar] [CrossRef]
- Teoh, W.Y.; Denny, F.; Amal, R.; Friedmann, D.; Mädler, L.; Pratsinis, S.E. Photocatalytic Mineralisation of Organic Compounds: A Comparison of Flame-Made TiO2 Catalysts. Top. Catal. 2007, 44, 489–497. [Google Scholar] [CrossRef]
- Tsekuoras, G.; Miyashita, M.; Kho, Y.K.; Teoh, W.Y.; Mozer, A.J.; Amal, R.; Mori, S.; Wallace, G.G. Charge Transport in Dye-Sensitized Solar Cells Based on Flame-Made TiO2 Nanoparticles. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 1641–1648. [Google Scholar] [CrossRef]
- Kho, Y.K.; Teoh, W.Y.; Mädler, L.; Amal, R. Dopant-Free, Polymorphic Design of TiO2 Nanocrystals by Flame Aerosol Synthesis. Chem. Eng. Sci. 2011, 66, 2409–2416. [Google Scholar] [CrossRef]
- Li, D.; Teoh, W.Y.; Selomulya, C.; Woodward, R.C.; Munroe, P.; Amal, R. Insight into Microstructural and Magnetic Properties of Flame-Made γ-Fe2O3 Nanoparticles. J. Mater. Chem. 2007, 17, 4876–4884. [Google Scholar] [CrossRef]
- Ohno, T.; Sarukawa, K.; Matsumura, M. Photocatalytic Activity of Pure Rutile Particles Isolated from TiO2 Powder by Dissolving the Anatase Component Using HF Solution. J. Phys. Chem. B 2001, 105, 2417–2420. [Google Scholar] [CrossRef]
- Ohno, T.; Tokieda, K.; Higashida, S.; Matsumura, M. Synergism Between Rutile and Anatase TiO2 Particles in Photocatalytic Oxidation of Naphthalene. Appl. Catal. A 2003, 244, 383–391. [Google Scholar] [CrossRef]
- Tryba, B.; Toyoda, M.; Morawski, A.W.; Nonaka, R.; Inagaki, M. Photocatalytic Activity and OH Radical Formation on TiO2 in the Relation to Crystallinity. Appl. Catal. B 2007, 71, 163–168. [Google Scholar] [CrossRef]
- Irawaty, W.; Hermawan, M.; Amal, R. The University of New South Wales: Sydney, Australia, Unpublished work. 2013.
- Tani, T.; Kato, A.; Morisaka, H. Effects of Solvent on Powder Characteristics of Zinc Oxide and Magnesia Prepared by Flame Spray Pyrolysis. J. Ceram. Soc. Jpn. 2005, 113, 255–258. [Google Scholar] [CrossRef]
- Height, M.J.; Pratsinis, S.E.; Mekasuwandumrong, O.; Praserthdam, P. Ag-ZnO catalysts for UV-photodegradation of methylene blue. Appl. Catal. B 2006, 63, 305–312. [Google Scholar] [CrossRef]
- Gerischer, H. Electrochemical Behavior of Semiconductors under Illumination. J. Electrochem. Soc. 1966, 113, 1174–1182. [Google Scholar] [CrossRef]
- Joshi, S.; Ghosh, I.; Pokhrel, S.; Mädler, L.; Nau, W.M. Interactions of Amino Acids and Polypeptides with Metal Oxide Nanoparticles Probed by Fluorescent Indicator Adsorption and Displacement. ACS Nano 2012, 6, 5668–5679. [Google Scholar] [CrossRef] [PubMed]
- Gunawan, C.; Teoh, W.Y.; Marquis, C.P.; Amal, R. Zinc Oxide Nanoparticles Induce Cell Filamentation in Escherichia coli. Part. Syst. Charact. 2013, 30, 375–380. [Google Scholar] [CrossRef]
- Abe, R.; Takami, H.; Murakami, N.; Ohtani, B. Pristine Simple Oxides as Visible Light Driven Photocatalysts: Highly Efficient Decomposition of Organic Compounds over Platinum-Loaded Tungsten Oxide. J. Am. Chem. Soc. 2008, 130, 7780–7781. [Google Scholar] [PubMed]
- Pokhrel, S.; Birkenstock, J.; Schowalter, M.; Rosenauer, A.; Mädler, L. Growth of Ultrafine Single Crystalline WO3 Nanoparticles Using Flame Spray Pyrolysis. Cryst. Growth Des. 2010, 10, 632–639. [Google Scholar] [CrossRef]
- Ohtani, B. Preparing Articles on Photocatalysis—Beyond the Illusions, Misconceptions, and Speculation. Chem. Lett. 2008, 37, 217–229. [Google Scholar]
- Yan, X.; Ohno, T.; Nishijima, K.; Abe, R.; Ohtani, B. Is Methylene Blue an Appropriate Substrate for a Photocatalytic Activity Test? A Study with Visible-Light Responsive Titania. Chem. Phys. Lett. 2006, 429, 606–610. [Google Scholar] [CrossRef]
- Teoh, W.Y.; Amal, R.; Mädler, L.; Pratsinis, S.E. Flame Sprayed Visible Light-Active Fe-TiO2 for Photomineralisation of Oxalic Acid. Catal. Today 2007, 120, 203–213. [Google Scholar] [CrossRef]
- Anpo, M.; Takeuchi, M. The Design and Development of Highly Reactive Titanium Oxide Photocatalysts Operating Under Visible Light Irradiation. J. Catal. 2003, 216, 505–516. [Google Scholar] [CrossRef]
- Li, M.; Pokhrel, S.; Jin, X.; Mädler, L.; Damoiseaux, R.; Hoek, E.M.V. Stability, Bioavailability, and Bacterial Toxicity of ZnO and Iron-doped ZnO Nanoparticles in Aquatic Media. Environ. Sci. Technol. 2011, 45, 755–761. [Google Scholar] [CrossRef] [PubMed]
- McDonald, K.J.; Choi, K.S. Synthesis and Photoelectrochemical Properties of Fe2O3/ZnFe2O4 Composite Photoanodes for Use in Solar Water Oxidation. Chem. Mater. 2011, 23, 4863–4869. [Google Scholar] [CrossRef]
- Schimmoeller, B.; Schulz, H.; Pratsinis, S.E.; Bareiss, A.; Reitzmann, A.; Kraushaar-Czarnetzki, B. Ceramic Foams Directly-Coated with Flame-Made V2O5/TiO2 for Synthesis of Phthalic Anhydride. J. Catal. 2006, 243, 82–92. [Google Scholar] [CrossRef]
- Tian, B.; Li, C.; Gu, F.; Jiang, H.; Hu, Y.; Zhang, J. Flame Sprayed V-doped TiO2 Nanoparticles with Enhanced Photocatalytic Activity under Visible Light Irradiation. Chem. Eng. J. 2009, 151, 220–227. [Google Scholar] [CrossRef]
- Martin, S.T.; Morrison, C.L.; Hoffmann, M.R. Photochemical Mechanism of Size-Quantized Vanadium-Doped TiO2 Particles. J. Phys. Chem. 1994, 98, 13695–13704. [Google Scholar] [CrossRef]
- Jiang, Y.; Scott, J.; Amal, R. Exploring the Relationship between Surface Structure and Photocatalytic Activity of Flame-Made TiO2-Based Catalysts. Appl. Catal. B 2012, 126, 290–297. [Google Scholar] [CrossRef]
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef]
- Patey, T.J.; Buchel, R.; Ng, S.H.; Krumeich, F.; Pratsinis, S.E.; Novak, P. Flame Co-Synthesis of LiMn2O4 and Carbon Nanocomposites for High Power Batteries. J. Power Sources 2009, 189, 149–154. [Google Scholar] [CrossRef]
- Kammler, J.A.; Pokhrel, S.; Birkenstock, J.; Schowalter, M.; Rosenauer, A.; Barsan, N.; Weimer, U.; Mädler, L. Quenched, Nanocrystalline In4Sn3O12 High Temperature Phase for Gas Sensing Applications. Sens. Actuator B 2012, 161, 740–747. [Google Scholar] [CrossRef]
- Loher, S.; Stark, W.J.; Maciejewski, M.; Baiker, A.; Pratsinis, S.E.; Reichardt, D.; Maspero, F.; Krumeich, F.; Gunther, D. Fluoro-Apatite and Calcium Phosphate Nanoparticles by Flame Synthesis. Chem. Mater. 2005, 17, 36–42. [Google Scholar] [CrossRef]
- Schulz, H.; Mädler, L.; Pratsinis, S.E.; Burtscher, P.; Moszner, N. Transparent Nanocomposites of Radiopaque, Flame-Made Ta2O5/SiO2 Particles in an Acrylic Matrix. Adv. Funct. Mater. 2005, 15, 830–837. [Google Scholar] [CrossRef]
- Brunner, T.J.; Grass, R.N.; Stark, W.J. Glass and Bioglass Nanopowders by Flame Synthesis. Chem. Commun. 2006. [Google Scholar] [CrossRef]
- Strobel, R.; Metz, H.J.; Pratsinis, S.E. Brilliant Yellow, Transparent Pure, and SiO2-Coated BiVO4 Nanoparticles Made in Flames. Chem. Mater. 2008, 20, 6346–6351. [Google Scholar] [CrossRef]
- Castillo, N.C.; Heel, A.; Graule, T.; Pulgarin, C. Flame-Assisted Synthesis of Nanoscale, Amorphous and Crystalline, Spherical BiVO4 with Visible-Light Photocatalytic Activity. Appl. Catal. B 2010, 95, 335–347. [Google Scholar] [CrossRef]
- Akurati, K.K.; Vital, A.; Dellemann, J.-P.; Michalow, K.; Graule, T.; Ferri, D.; Baiker, A. Flame-Made WO3/TiO2 Nanoparticles: Relation between Surface Acidity, Structure and Photocatalytic Activity. Appl. Catal. B 2008, 79, 53–62. [Google Scholar] [CrossRef]
- Chiarello, G.L.; Selli, E.; Forni, L. Photocatalytic Hydrogen Production over Flame Spray Pyrolysis-Synthesised TiO2 and Au/TiO2. Appl. Catal. B 2008, 84, 332–339. [Google Scholar] [CrossRef]
- Teoh, W.Y.; Mädler, L.; Amal, R. Inter-Relationship between Pt Oxidation States on TiO2 and the Photocatalytic Mineralisation of Organic Matters. J. Catal. 2007, 251, 271–280. [Google Scholar] [CrossRef]
- Chiarello, G.L.; Aguirre, M.H.; Selli, E. Hydrogen Production by Photocatalytic Steam Reforming of Methanol on Noble Metal-Modified TiO2. J. Catal. 2010, 273, 182–190. [Google Scholar] [CrossRef]
- Chiarello, G.L.; Ferri, D.; Selli, E. Effect of the CH3OH/H2O Ratio on the Mechanism of the Gas-Phase Photocatalytic Reforming of Methanol on Noble Metal-Modified TiO2. J. Catal. 2011, 280, 168–177. [Google Scholar] [CrossRef]
- Hou, W.; Cronin, S.B. A Review of Surface Plasmon Resonance-Enhanced Photocatalysis. Adv. Funct. Mater. 2013, 23, 1612–1619. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Teoh, W.Y. A Perspective on the Flame Spray Synthesis of Photocatalyst Nanoparticles. Materials 2013, 6, 3194-3212. https://doi.org/10.3390/ma6083194
Teoh WY. A Perspective on the Flame Spray Synthesis of Photocatalyst Nanoparticles. Materials. 2013; 6(8):3194-3212. https://doi.org/10.3390/ma6083194
Chicago/Turabian StyleTeoh, Wey Yang. 2013. "A Perspective on the Flame Spray Synthesis of Photocatalyst Nanoparticles" Materials 6, no. 8: 3194-3212. https://doi.org/10.3390/ma6083194
APA StyleTeoh, W. Y. (2013). A Perspective on the Flame Spray Synthesis of Photocatalyst Nanoparticles. Materials, 6(8), 3194-3212. https://doi.org/10.3390/ma6083194