New Coating Technique of Ceramic Implants with Different Glass Solder Matrices for Improved Osseointegration-Mechanical Investigations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Specimens
2.2. Glass Matrix—Mixture, Application and Modification
Glass solder | Grit size [µm] | Curing temperature [°C] | Layer thickness [µm] |
---|---|---|---|
HT1 | 12.6 | 1035 | 30 |
LT1 | 24 | 850 | 50 |
LT2 | 6 | 800 | 20 |
Surface type | Jet pressure [bar] | Angle to surface [°] | Distance to surface [cm] |
---|---|---|---|
ceramic base body | 2 | 60–80 | 2–3 |
glass ceramic coating | 1 | 60–80 | 2–3 |
2.3. Roughness
2.4. Adhesive Strength
2.5. X-ray Fluorescence Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Roughness
Sample type | No. of samples | Ø Ra [µm] | Ø Rz [µm] |
---|---|---|---|
TZP-A (untreated) | 8 | 0.20 ± 0.02 | 1.55 ± 0.12 |
TZP-A (sb) | 8 | 0.65 ± 0.08 | 4.28 ± 0.61 |
titanium (sb) | 8 | 0.78 ± 0.11 | 5.45 ± 0.61 |
Sample type | No. of samples | Ø Ra [µm] | Ø Rz [µm] |
---|---|---|---|
HT1 (sb) | 6 | 3.61 ± 0.23 | 20.44 ± 1.23 |
HT1 (sb/et) | 6 | 3.31 ± 0.19 | 19.37 ± 1.04 |
LT1 (sb) | 6 | 2.90 ± 0.48 | 17.29 ± 2.80 |
LT2 (sb) | 6 | 2.83 ± 0.19 | 16.99 ± 1.35 |
3.2. Adhesive Strength and X-ray Fluorescence Analysis
Sample type | No. of samples | Ultimate force [N] | Adhesive strength [MPa] | K on Ti face [%] |
---|---|---|---|---|
HT1 (sb) | 3 | 5687 ± 928 | 72.4 ± 11.8 | 5.5 ± 2.9 |
HT1 (sb/et) | 3 | 4491 ± 453 | 57.2 ± 5.8 | 3.9 ± 3.4 |
LT1 (sb) | 3 | 5601 ± 167 | 71.3 ± 2.1 | 2.3 ± 1.3 |
LT2 (sb) | 3 | 5284 ± 424 | 67.3 ± 5.4 | 0.6 ± 0.2 |
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Zietz, C.; Kluess, D.; Bergschmidt, P.; Haenle, M.; Mittelmeier, W.; Bader, R. Tribological aspects of ceramics in total hip and knee arthroplasty. Semin. Arthroplast. 2011, 22, 258–263. [Google Scholar] [CrossRef]
- Milosev, I.; Kovac, S.; Trebse, R.; Levasic, V.; Pisot, V. Comparison of ten-year survivorship of hip prostheses with use of conventional polyethylene, metal-on-metal, or ceramic-on-ceramic bearings. J. Bone Joint Surg. Am. 2012, 94, 1756–1763. [Google Scholar] [CrossRef] [PubMed]
- Bader, R.; Bergschmidt, P.; Fritsche, A.; Ansorge, S.; Thomas, P.; Mittelmeier, W. Alternative materials and solutions in total knee arthroplasty for patients with metal allergy. Orthopade 2008, 37, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Gallo, J.; Goodman, S.B.; Lostak, J.; Janout, M. Advantages and disadvantages of ceramic on ceramic total hip arthroplasty: A review. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 2012, 156, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Willmann, G. Keramische pfannen fuer hueftendoprothesen Teil 3: Zum problem der osteointegration monolithischer pfannen. Biomed. Tech. 1997, 42, 256–263. [Google Scholar] [CrossRef]
- Anderson, J.M. Biological responses to materials. Annu. Rev. Mater. Res. 2001, 31, 81–110. [Google Scholar] [CrossRef]
- Silva, N.; Sailer, I.; Zhang, Y.; Coelho, P.G.; Guess, P.C.; Zembic, A.; Kohal, R.J. Review: Performance of zirconia for dental healthcare. Materials 2010, 3, 863–896. [Google Scholar] [CrossRef]
- Ferris, D.M.; Moodie, G.D.; Dimond, P.M.; Gioranni, C.W.; Ehrlich, M.G.; Valentini, R.F. RGD-Coated titanium implants stimulate increased bone formation in vivo. Biomaterials 1999, 20, 2323–2331. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, R.; van den Dolder, J.; Bierbaum, S.; Beutner, R.; Scharnweber, D.; Jansen, J.; Beckmann, F.; Worch, H. Osteoconductive modifications of Ti-implants in a goat defect model: Characterization of bone growth with SR µCT and histology. Biomaterials 2005, 26, 3009–3019. [Google Scholar] [CrossRef] [PubMed]
- Elmengaard, B.; Bechtold, J.E.; Soballe, K. In vivo effects of RGD-coated titanium implants inserted in two bone-gap models. J. Biomed. Mater. Res. 2005, 75, 249–255. [Google Scholar] [CrossRef]
- Reyes, C.D.; Petrie, T.A.; Burns, K.L.; Schwartz, Z.; Garcia, A.J. Biomolecular surface coating to enhance orthopaedic tissue healing and integration. Biomaterials 2007, 28, 3228–3235. [Google Scholar] [CrossRef] [PubMed]
- Buser, D.; Schenk, R.K.; Steinemann, S.; Fiorellini, J.P.; Fox, C.H.; Stich, H. Influence of surface characteristics on bone integration of titanium implants. A histometric study in miniature pigs. J. Biomed. Mater. Res. 1991, 25, 889–902. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.Y.; Schwartz, Z.; Hummert, T.W.; Schraub, D.M.; Simpson, J.; Lankford, J.; Dean, D.D.; Cochran, D.L.; Boyan, B.D. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J. Biomed. Mater. Res. 1995, 29, 389–401. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, S.J.; Langhoff, J.D.; Voelter, K.; von Rechenberg, B.; Scharnweber, D.; Bierbaum, S.; Schnabelrauch, M.; Kautz, A.R.; Frauchiger, V.M.; Mueller, T.L.; et al. Biomechanical comparison of different surface modifications for dental implants. Int. J. Oral Maxillofac. Implant. 2008, 23, 1037–1046. [Google Scholar]
- Mistry, S.; Kundu, D.; Datta, S.; Basu, D. Comparison of bioactive glass coated and hydroxyapatite coated titanium dental implants in the human jaw bone. Aust. Dent. J. 2011, 56, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, G.; Liu, Y.; Zhao, X.; Zou, D.; Zhu, C.; Jin, Y.; Huang, Q.; Sun, J.; Liu, X.; et al. The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration. Biomaterials 2013, 34, 3184–3195. [Google Scholar] [CrossRef] [PubMed]
- Coelho, P.G.; Bonfante, E.A.; Pessoa, R.S.; Marin, C.; Granato, R.; Giro, G.; Witek, L.; Suzuki, M. Characterization of five different implant surfaces and their effect on osseointegration: A study in dogs. J. Periodontol. 2011, 82, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Climent, M.; Lazaro, P.; Vicente Rios, J.; Lluch, S.; Marques, M.; Guillem-Marti, J.; Gil, F.J. Influence of acid-etching after grit-blasted on osseointegration of titanium dental implants: In vitro and in vivo studies. J. Mater. Sci. Mater. Med. 2013, 24, 2047–2055. [Google Scholar] [CrossRef] [PubMed]
- Sollazzo, V.; Pezzetti, F.; Scarano, A.; Piattelli, A.; Bignozzi, C.A.; Massari, L.; Brunelli, G.; Carinci, F. Zirconium oxide coating improves implant osseointegration in vivo. Dent. Mater. 2008, 24, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Noro, A.; Kaneko, M.; Murata, I.; Yoshinari, M. Influence of surface topography and surface physicochemistry on wettability of zirconia (tetragonal zirconia polycrystal). J. Biomed. Mater. Res. Appl. Biomater. 2013, 101, 355–363. [Google Scholar] [CrossRef]
- Gahlert, M.; Roehling, S.; Wieland, M.; Sprecher, C.M.; Kniha, H.; Milz, S. Osseointegration of zirconia and titanium dental implants: A histological and histomorphometrical study in the maxilla of pigs. Clin. Oral Implant. Res. 2009, 20, 1247–1253. [Google Scholar] [CrossRef]
- Gahlert, M.; Roehling, S.; Wieland, M.; Eichhorn, S.; Kuechenhoff, H.; Kniha, H. A comparison study of the osseointegration of zirconia and titanium dental implants. A biomechanical evaluation in the maxilla of pigs. Clin. Implant. Dent. Relat. Res. 2010, 12, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Rocchietta, I.; Fontana, F.; Addis, A.; Schupbach, P.; Simion, M. Surface-modified zirconia implants: Tissue response in rabbits. Clin. Oral Implant. Res. 2009, 20, 844–850. [Google Scholar] [CrossRef]
- Sennerby, L.; Dasmah, A.; Larsson, B.; Iverhed, M. Bone tissue responses to surface-modified zirconia implants: A histomorphometric and removal torque study in the rabbit. Clin. Implant. Dent. Relat. Res. 2005, 7, S13–S20. [Google Scholar] [CrossRef] [PubMed]
- Koch, F.P.; Weng, D.; Kraemer, S.; Biesterfeld, S.; Jahn-Eimermacher, A.; Wagner, W. Osseointegration of one-piece zirconia implants compared with a titanium implant of identical design: A histomorphometric study in the dog. Clin. Oral Implant. Res. 2010, 21, 350–356. [Google Scholar] [CrossRef]
- Hopp, M.; Zothner, A. Verfahren zur Konditionierung der Oberflächen von Dentalkomponenten und Verwendung des Verfahrens [in German]. Patent DE102009051655B3, 30 December 2010. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Mick, E.; Markhoff, J.; Mitrovic, A.; Jonitz, A.; Bader, R. New Coating Technique of Ceramic Implants with Different Glass Solder Matrices for Improved Osseointegration-Mechanical Investigations. Materials 2013, 6, 4001-4010. https://doi.org/10.3390/ma6094001
Mick E, Markhoff J, Mitrovic A, Jonitz A, Bader R. New Coating Technique of Ceramic Implants with Different Glass Solder Matrices for Improved Osseointegration-Mechanical Investigations. Materials. 2013; 6(9):4001-4010. https://doi.org/10.3390/ma6094001
Chicago/Turabian StyleMick, Enrico, Jana Markhoff, Aurica Mitrovic, Anika Jonitz, and Rainer Bader. 2013. "New Coating Technique of Ceramic Implants with Different Glass Solder Matrices for Improved Osseointegration-Mechanical Investigations" Materials 6, no. 9: 4001-4010. https://doi.org/10.3390/ma6094001
APA StyleMick, E., Markhoff, J., Mitrovic, A., Jonitz, A., & Bader, R. (2013). New Coating Technique of Ceramic Implants with Different Glass Solder Matrices for Improved Osseointegration-Mechanical Investigations. Materials, 6(9), 4001-4010. https://doi.org/10.3390/ma6094001