Stress Corrosion Cracking of an Austenitic Stainless Steel in Nitrite-Containing Chloride Solutions
Abstract
:1. Introduction
2. Experimental
Volume of 1 M NaNO2 added to 250 mL 30 wt. % MgCl2 | Concentration of NO2− anions (ppm) |
---|---|
0 | 0 |
10 | 1400 |
20 | 2800 |
40 | 5600 |
3. Results and Discussion
3.1. SSRT in Plain MgCl2 Solution at Various Strain Rates
3.2. SSRT in Nitrite-Containing MgCl2 Solution
4. Conclusions
- (a)
- 316L suffers intergranular stress corrosion cracking (SCC) at strain rates of 3.7 × 10−7 and 5.3 × 10−7 s−1, and no SCC at higher strain rates.
- (b)
- Additions of NO2− (1400–5600 ppm) accelerate susceptibility to chloride SCC.
- (c)
- With increasing NO2− content, SCC susceptibility increases in the order, 1400 ppm > 2800 ppm > 5600 ppm. This behaviour has been attributed to the increasing passivation characteristic with increasing NO2− content.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jones, D.A. Principles & Prevention of Corrosion, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1992; p. 239. [Google Scholar]
- Singh Raman, R.K.; Saxena, A. Role of imposed potential in expanding the regime of strain rates for caustic cracking. J. Electrochem. Soc. 2007, 154, C451–C457. [Google Scholar] [CrossRef]
- Singh Raman, R.K. Evaluation of caustic embrittlement susceptibility of steels by slow strain rate testing. Metall. Mater. Trans. A 2005, 36A, 1817–1823. [Google Scholar] [CrossRef]
- Singh Raman, R.K. Role of caustic concentration and electrochemical potentials in caustic cracking of steels. Mater. Sci. Eng. A 2006, 441, 342–348. [Google Scholar] [CrossRef]
- Singbeil, D.; Tromans, D.J. Effect of sulfide ions on caustic cracking of mild steel. Electrochem. Soc. Electrochem. Sci. Technol. Corros. 1981, 128, 2065–2070. [Google Scholar] [CrossRef]
- Singbeil, D.; Tromans, D.J. Caustic stress corrosion cracking of mild steel. Metall. Trans. A 1982, 13, 1091–1098. [Google Scholar] [CrossRef]
- Newman, R.C.; Shahrabi, T. The effect of alloyed nitrogen or dissolved nitrate ions on the anodic behaviour of austenitic stainless steel in hydrochloric acid. Corros. Sci. 1987, 27, 827–838. [Google Scholar] [CrossRef]
- Newman, R.C.; Ajjawi, M.A. A micro-electrode study of the nitrate effect on pitting of stainless steels. Corros. Sci. 1986, 26, 1057–1063. [Google Scholar] [CrossRef]
- Zuo, Y.; Wang, H.; Zhao, J.; Xiong, J. The effects of some anions on metastable pitting of 316L stainless steel. Corros. Sci. 2002, 44, 13–24. [Google Scholar] [CrossRef]
- Uhlig, H.H.; Cook, E.W., Jr. Mechanism of inhibiting stress corrosion cracking of 18-8 stainless steel in mgcl2 by acetates and nitrates. J. Electrochem. Soc. 1969, 116, 173–177. [Google Scholar] [CrossRef]
- Leckie, H.P.; Uhlig, H.H. Environmental factors affecting the critical potential for pitting in 18–8 stainless steel. J. Electrochem. Soc. 1966, 113, 1262–1267. [Google Scholar] [CrossRef]
- Jones, R.L. Nitrate effects promoting the stress corrosion cracking of AISI type 304 stainless steel in MgCl2 Above 200 °C. Corrosion 1975, 31, 431–434. [Google Scholar] [CrossRef]
- Illevbare, G.O.; King, K.J.; Gordon, S.R.; Elayat, H.A.; Gdowski, G.E.; Summers, T.S.E. Effect of nitrate on the repassivation potential of alloy 22 in chloride containing environments. In Proceedings of the 206th Meeting of The Electrochemical Society, Honolulu, HI, USA, 3–8 October 2004.
- Refaey, S.A.M.; el-Rehim, S.S.A.; Taha, F.; Saleh, M.B.; Ahmed, R.A. Inhibition of chloride localized corrosion of mild steel by PO43−, CrO42−, MoO42−, and NO2− anions. Appl. Surface Sci. 2000, 158, 190–196. [Google Scholar] [CrossRef]
- Bardwell, J.A.; Sproule, G.I.; Mitchell, D.F.; Macdougall, B.; Graham, M.J. Nature of the passive film on Fe–Cr alloys as studied by 18O secondary ion mass spectrometry: reduction of the prior film and stability to ex-situ surface analysis. J. Chem. Soc. Faraday Trans. 1991, 87, 1011–1019. [Google Scholar] [CrossRef]
- Singh Raman, R.K.; Siew, W.H. Role of nitrite addition in chloride stress corrosion cracking of a super duplex stainless steel. Corros. Sci. 2010, 52, 113–117. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raman, R.K.S.; Siew, W.H. Stress Corrosion Cracking of an Austenitic Stainless Steel in Nitrite-Containing Chloride Solutions. Materials 2014, 7, 7799-7808. https://doi.org/10.3390/ma7127799
Raman RKS, Siew WH. Stress Corrosion Cracking of an Austenitic Stainless Steel in Nitrite-Containing Chloride Solutions. Materials. 2014; 7(12):7799-7808. https://doi.org/10.3390/ma7127799
Chicago/Turabian StyleRaman, R. K. Singh, and Wai Hoong Siew. 2014. "Stress Corrosion Cracking of an Austenitic Stainless Steel in Nitrite-Containing Chloride Solutions" Materials 7, no. 12: 7799-7808. https://doi.org/10.3390/ma7127799
APA StyleRaman, R. K. S., & Siew, W. H. (2014). Stress Corrosion Cracking of an Austenitic Stainless Steel in Nitrite-Containing Chloride Solutions. Materials, 7(12), 7799-7808. https://doi.org/10.3390/ma7127799