The Microstructural Evolution and Mechanical Properties of Zr-Based Metallic Glass under Different Strain Rate Compressions
Abstract
:1. Introduction
2. Material Preparation and Experimental Procedure
3. Results and Discussion
3.1. Structure Analysis of Zr-Based Metallic Glass
3.2. Stress-Strain Curve and Strain Rate Effect
Strain rate (s−1) | Yielding stress (MPa) |
---|---|
10−3 | 1400 |
10−2 | 1580 |
10−1 | 1600 |
2.2 × 103 | 1720 |
3.2 × 103 | 1785 |
5.1 × 103 | 1840 |
3.3. Fracture Surface Observations
3.4. Microstructural Evolution by Using in situ TEM Compression
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Inoue, A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000, 48, 279–306. [Google Scholar] [CrossRef]
- Inoue, A.; Shen, B.L.; Koshiba, H.; Kato, H.; Yavari, A.R. Ultra-high strength above 5000 MPa and soft magnetic properties of Co-Fe-Ta-B bulk glassy alloys. Acta Mater. 2004, 52, 1631–1637. [Google Scholar] [CrossRef]
- Eckert, J.; Das, J.; Pauly, S.; Duhamel, C. Mechanical properties of bulk metallic glasses and composites. J. Mater. Res. 2007, 22, 285–301. [Google Scholar] [CrossRef]
- Gebert, A.; Buchholz, K.; Leonhard, A.; Mummert, K.; Eckert, J.; Schultz, L. Investigations on the electrochemical behaviour of Zr-based bulk metallic glasses. Mater. Sci. Eng. A 1999, 267, 294–300. [Google Scholar] [CrossRef]
- Zhang, H.W.; Subhash, G.; Jing, X.N.; Kecskes, L.J.; Dowding, R.J. Evaluation of hardness-yield strength relationships for bulk metallic glasses. Philos. Mag. Lett. 2006, 86, 333–345. [Google Scholar] [CrossRef]
- Chen, C.Q.; Pei, Y.T.; De Hosson, J.T.M. Effects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments. Acta Mater. 2010, 58, 189–200. [Google Scholar] [CrossRef]
- Chen, K.W.; Lin, J.F. Investigation of the relationship between primary and secondary shear bands induced by indentation in bulk metallic glasses. Int. J. Plastic. 2010, 26, 1645–1658. [Google Scholar] [CrossRef]
- Bian, Z.; Pan, M.X.; Zhang, Y.; Wang, W.H. Carbon-nanotube-reinforced Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass composites. Appl. Phys. Lett. 2002, 81, 4739–4741. [Google Scholar] [CrossRef]
- Hofmann, D.C.; Suh, J.Y.; Wiest, A.; Duan, G.; Lind, M.L.; Demetriou, M.D.; Johnson, W.L. Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 2008, 451, 1085–1089. [Google Scholar] [CrossRef]
- Fornell, J.; Concustell, A.; Surinach, S.; Li, W.H.; Cuadrado, N.; Gebert, A.; Baro, M.D.; Sort, J. Yielding and intrinsic plasticity of Ti-Zr-Ni-Cu-Be bulk metallic glass. Int. J. Plasticity 2009, 25, 1540–1559. [Google Scholar] [CrossRef]
- Launey, M.E.; Hofmann, D.C.; Suh, J.Y.; Kozachkov, H.; Johnson, W.L.; Ritchie, R.O. Fracture toughness and crack-resistance curve behavior in metallic glass-matrix composites. Intermetallics 2009, 10, 1283–1288. [Google Scholar]
- Bei, H.; Xie, S.; George, E.P. Softening caused by profuse shear banding in a bulk metallic glass. Phys. Rev. Lett. 2006, 96. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Zhang, H.; Pan, X.F.; Das, J.; Ecker, J. Effect of aspect ratio on the compressive deformation an fracture behavior of Zr-based bulk metallic glass. Phil. Mag. Lett. 2005, 85, 513–521. [Google Scholar] [CrossRef]
- Sunny, G.; Yuan, F.; Prakash, V.; Lewandowski, J.J. Design of inserts for split-Hopkinson pressure bar testing of low strain-to-failure materials. Exp. Mech. 2009, 49, 479–490. [Google Scholar] [CrossRef]
- Sunny, G.; Yuan, F.P.; Prakash, V.; Lewandowski, J.J. Effect of high strain rates on peak stress in a Zr-based bulk metallic glass. J. Appl. Phys. 2008, 104. [Google Scholar] [CrossRef]
- Sunny, G.; Lewandowski, J.J.; Prakash, V. Effects of annealing and specimen geometry on dynamic compression of a Zr-based bulk metallic glass. J. Mater. Res. 2007, 22, 389–401. [Google Scholar] [CrossRef]
- Lee, J.C.; Kim, Y.C.; Ahn, J.P.; Kim, H.S. Enhanced plasticity in a bulk amorphous matrix composite: Macroscopic and microscopic viewpoint studies. Acta Mater. 2005, 53, 129–139. [Google Scholar] [CrossRef]
- Wu, Y.; Li, H.X.; Liu, Z.Y.; Chen, G.L.; Lu, Z.P. Interpreting size effects of bulk metallic glasses based on a size-independent critical energy density. Intermetallics 2010, 18, 157–160. [Google Scholar] [CrossRef]
- Yi, J.; Wang, W.H.; Lewandowski, J.J. Sample size and preparation effects on the tensile ductility of Pd-based metallic glass nanowires. Acta Mater. 2015, 87, 1–7. [Google Scholar] [CrossRef]
- Guo, H.; Yan, P.F.; Wang, Y.B.; Tan, J.; Zhang, Z.F.; Sui, M.L.; Ma, E. Tensile ductility and necking of metallic glass. Nat. Mater. 2007, 6, 735–739. [Google Scholar] [CrossRef]
- Volkert, C.A.; Donohue, A.; Spaepen, F. Effect of sample size on deformation in amorphous metals. J. Appl. Phys. 2008, 103. [Google Scholar] [CrossRef]
- Cheng, Y.Q.; Cao, A.J.; Sheng, H.W.; Ma, E. Local order influences initiation of plastic flow in metallic glass: Effects of alloy composition and sample cooling history. Acta Mater. 2008, 56, 5263–5275. [Google Scholar] [CrossRef]
- Yang, B.J.; Yao, J.H.; Zhang, J.; Yang, H.W.; Wang, J.Q.; Ma, E. Al-rich bulk metallic glasses with plasticity and ultrahigh specific strength. Scr. Mater. 2009, 61, 423–426. [Google Scholar] [CrossRef]
- Cheng, Y.Q.; Ma, E.; Sheng, H.W. Atomic level structure in multicomponent bulk metallic glass. Phys. Rev. Lett. 2009, 102. [Google Scholar] [CrossRef]
- Greer, A.L.; Cheng, Y.Q.; Ma, E. Shear bands in metallic glasses. Mater. Sci. Eng. R Rep. 2013, 74, 71–132. [Google Scholar] [CrossRef]
- Miracle, D.B.; Concustell, A.; Zhang, Y.; Yavari, A.R.; Greer, A.L. Shear bands in metallic glasses: Size effects on thermal profiles. Acta Mater. 2011, 59, 2831–2840. [Google Scholar] [CrossRef]
- Hajlaoui, K.; Yavari, A.R.; LeMoule, A.; Botta, W.J.; Vaughan, F.G.; Das, J.; Greer, A.L.; Kvick, Å. Plasticity induced by nanoparticle dispersions in bulk metallic glasses. J. Non Cryst. Solids 2007, 353, 327–331. [Google Scholar] [CrossRef]
- Greer, A.L. Metallic Glasses. Science 1995, 267, 1947–1953. [Google Scholar] [CrossRef]
- Altounian, Z.; Volkert, C.A.; Strom‐Olsen, J.O. Crystallization characteristics of Fe‐Zr metallic glasses from Fe43Zr57 to Fe20Zr80. J. Appl. Phys. 1985, 57. [Google Scholar] [CrossRef]
- Maaß, R.; Klaumünzer, D.; Löffler, J.F. Propagation dynamics of individual shear bands during inhomogeneous flow in a Zr-based bulk metallic glass. Acta Mater. 2011, 59, 3205–3213. [Google Scholar] [CrossRef]
- Dalla Torre, F.H.; Klaumünzer, D.; Maaß, R.; Löffler, J.F. Stick-slip behavior of serrated flow during inhomogeneous deformation of bulk metallic glasses. Acta Mater. 2010, 58, 3742–3750. [Google Scholar] [CrossRef]
- Maaß, R.; Klaumünzer, D.; Villard, G.; Derlet, P.M.; Löffler, J.F. Shear-band arrest and stress overshoots during inhomogeneous flow in a metallic glass. Appl. Phys. Lett. 2012, 100. [Google Scholar] [CrossRef]
- Egg, S.S.; Sue, Y.Q.; Hirsch, P.B. Strain rate dependence of the flow stress and work hardening of γ′. Mater. Sci. Eng. A 1995, 192/193, 45–52. [Google Scholar]
- Gong, P.; Yao, K.F.; Shao, Y. Lightweight Ti-Zr-Be-Al bulk metallic glasses with improved glass-forming ability compressive plasticity. J. Non-Cryst. Solids. 2012, 358, 2620–2625. [Google Scholar] [CrossRef]
- Pan, J.; Liu, L.; Chan, K.C. Enhanced plasticity by phase separation in CuZrAl bulk metallic glass with micro-addition of Fe. Scr. Mater. 2009, 60, 822–825. [Google Scholar] [CrossRef]
- Park, E.S.; Chang, H.J.; Kim, D.H. Effect of addition of Be on glass-forming ability, plasticity and structural change in Cu-Zr bulk metallic glasses. Acta Mater. 2008, 56, 3120–3131. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.-H.; Tsai, C.-K. The Microstructural Evolution and Mechanical Properties of Zr-Based Metallic Glass under Different Strain Rate Compressions. Materials 2015, 8, 1831-1840. https://doi.org/10.3390/ma8041831
Chen T-H, Tsai C-K. The Microstructural Evolution and Mechanical Properties of Zr-Based Metallic Glass under Different Strain Rate Compressions. Materials. 2015; 8(4):1831-1840. https://doi.org/10.3390/ma8041831
Chicago/Turabian StyleChen, Tao-Hsing, and Chih-Kai Tsai. 2015. "The Microstructural Evolution and Mechanical Properties of Zr-Based Metallic Glass under Different Strain Rate Compressions" Materials 8, no. 4: 1831-1840. https://doi.org/10.3390/ma8041831
APA StyleChen, T.-H., & Tsai, C.-K. (2015). The Microstructural Evolution and Mechanical Properties of Zr-Based Metallic Glass under Different Strain Rate Compressions. Materials, 8(4), 1831-1840. https://doi.org/10.3390/ma8041831