Experimental Studies on the Flammability and Fire Hazards of Photovoltaic Modules
Abstract
:1. Introduction
2. Analysis of the Flammability of PV Modules
3. Experimental Section
3.1. Materials
3.2. Test Method
4. Results and Analysis
4.1. Experimental Phenomena
4.2. Fire Behaviour
4.3. Fire Hazards
Values | x parameter | Total Heat Release (THR) |
---|---|---|
0.1–1.0 | Low risk to flashover | Very low risk to heat contribution |
1.0–10 | Intermediate risk to flashover | Low risk to heat contribution |
10–100 | High risk to flashover | Intermediate low risk to heat contribution |
100–1000 | - | High risk to heat contribution |
Heat flux (kW/m2) | Derived data | |||
---|---|---|---|---|
TTI (s) | pk HRR (kW/m2) | x parameter (kW/m2s) | THR (MJ/m2) | |
28 | 913 | 85 | 0.093 | 38.270 (Intermediate risk) |
30 | 636 | 116 | 0.182 (low risk) | 56.736 (Intermediate risk) |
35 | 218 | 226 | 1.037 (Intermediate risk) | 50.069 (Intermediate risk) |
40 | 133 | 272 | 2.045 (Intermediate risk) | 48.524 (Intermediate risk) |
45 | 83 | 402 | 4.843 (Intermediate risk) | 45.481 (Intermediate risk) |
4.4. Toxicity of Gases
Heat flux (kW/m2) | Peak CO (ppm) | FED = [CO]/5000 |
---|---|---|
28 | 101 | 0.0202 |
30 | 128 | 0.0256 |
35 | 274 | 0.0548 |
40 | 356 | 0.0712 |
45 | 542 | 0.108 |
4.5. Mass Loss and Mass Loss Rate
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
tig | ignition delay, s |
ρ | density, kg/m3 |
Cp | thermal capacity, kJ/(g K) |
d | thickness of samples, m |
T∞ | ambient temperature, K |
external heat flux, kW/m2 | |
λ | thermal conductivity, kW/(mK) |
[CO] | carbon monoxide concentration, ppm |
[CO2] | carbon dioxide concentration, ppm |
Tig | ignition temperature, K |
References
- Jelle, B.P.; Breivik, C.; Røkenes, H.D. Building integrated photovoltaic products: A state-of-the-art review and future research opportunities. Sol. Energy Mater. Sol. Cells 2012, 100, 69–96. [Google Scholar] [CrossRef]
- Wohlgemuth, J.H.; Kurtz, S.R. How can we make PV modules safer. In Proceeding of the 2012 38th IEEE on Photovoltaic Specialists Conference (PVSC), Austin, TX, USA, 3–8 June 2012; pp. 003162–003165.
- Bower, W. National electrical code changes in 2014 for photovoltaics: Processes, critical industry consensus topics and impacts. In Proceeding of the 2014 IEEE 40th on Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014; pp. 3352–3355.
- International Electrotechnical Commission. Photovoltaic (PV) Module Safety Qualification-Part 2: Requirements for Testing; IEC 61730-2:2004; International Electrotechnical Commission: Geneva, Switzerland, 2004. [Google Scholar]
- Underwriters Laboratories Inc. Flat-Plate Photovoltaic Modules and Panels; UL 1703; Underwriters Laboratories Inc.: Northbook, IL, USA, 2004. [Google Scholar]
- Underwriters Laboratories Inc. Fire Test of Roof Deck Constructions; UL 1256; Underwriters Laboratories Inc.: Northbrook, IL, USA, 2002. [Google Scholar]
- Cancelliere, P. PV electrical plants fire risk assessment and mitigation according to the Italian national fire services guidelines. Fire Mater. 2014. [Google Scholar] [CrossRef]
- National Fire Protection Association. National Electrical Code; NFPA70; National Fire Protection Association: Quincy, MA, USA, 2014. [Google Scholar]
- Tommasini, R.; Pons, E.; Palamara, F.; Turturici, C.; Colella, P. Risk of electrocution during fire suppression activities involving photovoltaic systems. Fire Saf. J. 2014, 67, 35–41. [Google Scholar] [CrossRef]
- Bonnet, J.; Bounor-Legaré, V.; Boisson, F.; Mélis, F.; Camino, G.; Cassagnau, P. Phosphorus based organic–inorganic hybrid materials prepared by reactive processing for EVA fire retardancy. Polym. Degrad. Stab. 2012, 97, 513–522. [Google Scholar] [CrossRef]
- Ohuchi, T.; Ishikawa, N.; Kozawa, Y. Improvement of the fire-proofing and fire-resistance properties of PV modules for building’s exterior walls. In Proceeding of the 2000 Conference Record of the Twenty-Eighth IEEE on Photovoltaic Specialists Conference, Anchorage, AK, USA, 15–22 September 2010; pp. 1533–1538.
- Fthenakis, V.M.; Fuhrmann, M.; Heiser, J.; Wang, W. Experimental investigation of emissions and redistribution of elements in CdTe PV modules during fires. In Proceeding of the 19th European PV Solar Energy Conference, Paris, France, 7–11 June 2004.
- Mei, L.; Infield, D.G.; Gottschalg, R.; Loveday, D.L.; Davies, D.; Berry, M. Equilibrium thermal characteristics of a building integrated photovoltaic tiled roof. Sol. Energy 2009, 83, 1893–1901. [Google Scholar] [CrossRef]
- Murata, K.; Yagiura, T.; Takeda, K.; Tanaka, M.; Kiyama, S. New type of photovoltaic module integrated with roofing material (highly fire-resistant PV tile). Sol. Energy Mater. Sol. Cells 2003, 75, 647–653. [Google Scholar] [CrossRef]
- Chow, W.K.; Han, S.S. Studies on fire behaviour of video compact disc (VCD) materials with a cone calorimeter. Polym. Test. 2004, 23, 685–694. [Google Scholar] [CrossRef]
- Luche, J.; Mathis, E.; Rogaume, T.; Richard, F.; Guillaume, E. High-density polyethylene thermal degradation and gaseous compound evolution in a cone calorimeter. Fire Saf. J. 2012, 54, 24–35. [Google Scholar] [CrossRef]
- Bakhtiyari, S.; Taghi-Akbari, L.; Ashtiani, M.J. Evaluation of thermal fire hazard of 10 polymeric building materials and proposing a classification method based on cone calorimeter results. Fire Mater. 2015, 39, 1–13. [Google Scholar] [CrossRef]
- Babrauskas, V. Development of the cone calorimeter—A bench-scale heat release rate apparatus based on oxygen consumption. Fire Mater. 1984, 8, 81–95. [Google Scholar] [CrossRef]
- Beaulieu, P.A.; Dembsey, N.A. Effect of oxygen on flame heat flux in horizontal and vertical orientations. Fire Saf. J. 2008, 43, 410–428. [Google Scholar] [CrossRef]
- Ito, A.; Kashiwagi, T. Characterization of flame spread over PMMA using holographic interferometry sample orientation effects. Combust. Flame 1988, 71, 189–204. [Google Scholar] [CrossRef]
- Ayani, M.B.; Esfahani, J.A.; Mehrabian, R. Downward flame spread over PMMA sheets in quiescent air: Experimental and theoretical studies. Fire saf. J. 2006, 41, 164–169. [Google Scholar] [CrossRef]
- Babrauskas, V. Speciman heat fluxes for bench-scale heat release rate testing. Fire Mater. 1995, 19, 243–252. [Google Scholar] [CrossRef]
- Quang, D.Q.; Luche, J.; Richard, F.; Rogaume, T.; Bourhy-Weber, C.; Ruban, S. Determination of characteristic parameters for the thermal decomposition of epoxy resin/carbon fibre composites in cone calorimeter. Int. J. Hydrog. Energy 2013, 38, 8167–8178. [Google Scholar] [CrossRef]
- Drysdale, D. An introduction to Fire Dynamics; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Patel, P.; Hull, T.R.; Stec, A.A.; Lyon, R.E. Influence of physical properties on polymer flammability in the cone calorimeter. Polym. Adv. Technol. 2011, 22, 1100–1107. [Google Scholar] [CrossRef]
- Janssens, M.A.R.C. A thermal model for piloted ignition of wood including variable thermophysical properties. In Fire Safety Science: Proceedings of the Third International Symposium; Taylor & Francis: New York, NY, USA, 1991; pp. 167–176. [Google Scholar]
- International Organization for Standardization. Reaction-to-Fire Tests—Heat Release, Smoke Production and Mass Loss Rate—Part 1: Heat Release Rate (Cone Calorimeter Method); ISO 5660-1:2002; International Organization for Standardization: Geneva, Switzerland, 2002. [Google Scholar]
- Petrella, R.V. The assessment of full-scale fire hazards from cone calorimeter data. J. Fire Sci. 1994, 12, 14–43. [Google Scholar] [CrossRef]
- Chow, W.K. Fire hazard assessment on polyurethane sandwich panels for temporary accommodation units. Polym. Test. 2004, 23, 973–977. [Google Scholar] [CrossRef]
- Bakhtiyari, S.; Taghiakbari, L.; Barikani, M. Fire behavior of rigid PUR foam and metal faced PUR sandwich panels and fire hazard assessment. Iran. J. Polym. Sci. Technol. 2009, 22, 183–195. [Google Scholar]
- Leonard, J.E.; Bowditch, P.A.; Dowling, V.P. Development of a controlled-atmosphere cone calorimeter. Fire Mater. 2000, 24, 143–150. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.-Y.; Zhou, X.-D.; Yang, L.-Z.; Zhang, T.-L. Experimental Studies on the Flammability and Fire Hazards of Photovoltaic Modules. Materials 2015, 8, 4210-4225. https://doi.org/10.3390/ma8074210
Yang H-Y, Zhou X-D, Yang L-Z, Zhang T-L. Experimental Studies on the Flammability and Fire Hazards of Photovoltaic Modules. Materials. 2015; 8(7):4210-4225. https://doi.org/10.3390/ma8074210
Chicago/Turabian StyleYang, Hong-Yun, Xiao-Dong Zhou, Li-Zhong Yang, and Tao-Lin Zhang. 2015. "Experimental Studies on the Flammability and Fire Hazards of Photovoltaic Modules" Materials 8, no. 7: 4210-4225. https://doi.org/10.3390/ma8074210
APA StyleYang, H.-Y., Zhou, X.-D., Yang, L.-Z., & Zhang, T.-L. (2015). Experimental Studies on the Flammability and Fire Hazards of Photovoltaic Modules. Materials, 8(7), 4210-4225. https://doi.org/10.3390/ma8074210