Efficient Solar-Induced Photoelectrochemical Response Using Coupling Semiconductor TiO2-ZnO Nanorod Film
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological Studies
2.2. Crystallinity Studies
2.3. Photoluminescence Studies
2.4. Photoelectrochemical Response and Photoconversion Efficiency
2.5. Optical Properties
3. Materials and Methods
3.1. The Fabrication of ZnO Nanorods
3.2. The Formation of TiO2 Nanoparticles
3.3. The Formation of TiO2-ZnO Composite Thin Film
3.4. Characterization Methods
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Navarro Yerga, R.M.; Alvarez Galván, M.C.; del Valle, F.; Villoria de la Mano, J.A.; Fierro, J.L. Water Splitting on Semiconductor Catalysts under Visible-Light Irradiation. ChemSusChem 2009, 2, 471–485. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Park, H. Light-harvesting multi-walled carbon nanotubes and CdS hybrids: Application to photocatalytic hydrogen production from water. Energy Environ. Sci. 2011, 4, 685–694. [Google Scholar] [CrossRef]
- Bahadur, H.; Srivastava, A.K.; Sharma, R.K.; Chandra, S. Morphologies of sol-gel derived thin films of ZnO using different precursor materials and their nanostructures. Nanoscale Res. Lett. 2007, 2, 469–475. [Google Scholar] [CrossRef]
- Bornand, V.; Mezy, A. An alternative approach for the oriented growth of ZnO nanostructures. Mater. Lett. 2011, 65, 1363–1366. [Google Scholar] [CrossRef]
- Aziz, N.S.; Mahmood, M.R.; Yasui, K.; Hashim, A.M. Seed/catalyst-free vertical growth of high-density electrodeposited zinc oxide nanostructures on a single-layer graphene. Nanoscale Res. Lett. 2014, 9, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Li, Y.; Du, Z.; Carter, K.R. Electrochemical deposition of ZnO hierarchical nanostructures from hydrogel coated electrodes. J. Electrochem. Soc. 2013, 160, D156–D162. [Google Scholar] [CrossRef]
- Kim, Y.J.; Hadiyawarman; Yoon, A.; Kim, M.; Yi, G.C.; Liu, C. Hydrothermally grown ZnO nanostructures on few-layer graphene sheets. Nanotechnology 2011, 22. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Liu, Z.; Huang, Y.; Gao, Y.; Han, B.; Li, W.; Yang, G. Control of ZnO morphologies via surfactants assisted route in the subcritical water. J. Cryst. Growth 2005, 280, 126–134. [Google Scholar] [CrossRef]
- Lepot, N.; van Bael, M.K.; van den Rul, H.; D’Haen, J.; Peeters, R.; Franco, D.; Mullens, J. Synthesis of ZnO nanorods from aqueous solution. Mater. Lett. 2007, 61, 2624–2627. [Google Scholar] [CrossRef]
- Park, W.I.; Kim, D.H.; Jung, S.-W.; Yi, G. Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Appl. Phys. Lett. 2002, 80, 4232–4234. [Google Scholar] [CrossRef]
- Oliveira, M.M.; Schnitzler, D.C.; Zarbin, A.J. (Ti, Sn) O2 Mixed Oxides Nanoparticles Obtained by the Sol-Gel Route. Chem. Mater. 2003, 15, 1903–1909. [Google Scholar] [CrossRef]
- Andersson, M.; Österlund, L.; Ljungström, S.; Palmqvist, A. Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol. J. Phys. Chem. B 2002, 106, 10674–10679. [Google Scholar] [CrossRef]
- Varghese, N.; Panchakarla, L.S.; Hanapi, M.; Govindaraj, A.; Rao, C.N.R. Solvothermal synthesis of nanorods of ZnO, N-doped ZnO and CdO. Mater. Res. Bull. 2007, 42, 2117–2124. [Google Scholar] [CrossRef]
- Yiamsawas, D.; Boonpavanitchakul, K.; Kangwansupamonkon, W. Preparation of ZnO nanostructures by solvothermal method. J. Microsc. Soc. Thail. 2009, 23, 75–78. [Google Scholar]
- Lee, H.K.; Yu, J.S. Growth Parameter Dependent Structural and Optical Properties of ZnO Nanostructures on Si Substrate by a Two-Zone Thermal CVD. J. Nanosci. Nanotechnol. 2012, 12, 3123–3129. [Google Scholar] [CrossRef] [PubMed]
- Khranovskyy, V.; Yakimova, R. Morphology engineering of ZnO nanostructures. Phys. B Condens. Matter 2012, 407, 1533–1537. [Google Scholar] [CrossRef]
- Kim, K.-S.; Kim, H.W. Synthesis of ZnO nanorod on bare Si substrate using metal organic chemical vapor deposition. Phys. B Condens. Matter 2003, 328, 368–371. [Google Scholar] [CrossRef]
- Saitoh, H.; Satoh, M.; Tanaka, N.; Ueda, Y.; Ohshio, S. Homogeneous growth of zinc oxide whiskers. Jpn. J. Appl. Phys. 1999, 38, 6873. [Google Scholar] [CrossRef]
- Clavel, G.; Marichy, C.; Willinger, M.; Ravaine, S.; Zitoun, D.; Pinna, N. CoFe2O4-TiO2 and CoFe2O4-ZnO Thin Film Nanostructures Elaborated from Colloidal Chemistry and Atomic Layer Deposition. Langmuir 2010, 26, 18400–18407. [Google Scholar] [CrossRef] [PubMed]
- Leskelä, M.; Ritala, M. Atomic layer deposition (ALD): From precursors to thin film structures. Thin Solid Films 2002, 409, 138–146. [Google Scholar] [CrossRef]
- Solís-Pomar, F.; Martínez, E.; Meléndrez, M.F.; Pérez-Tijerina, E. Growth of vertically aligned ZnO nanorods using textured ZnO films. Nanoscale Res. Lett. 2011, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-K.; Chen, M.; Tsai, F.; Yang, J.; Shiojiri, M. Fabrication of ZnO nanopillars by atomic layer deposition. Mater. Trans. 2010, 51, 253–255. [Google Scholar] [CrossRef]
- Rousset, J.; Lincot, D. Low Temperature Electrodeposition of Zinc Oxide Layers as Transparent Conducting Oxide Window Layers for Cigs Solar Cells. In Proceedings of the 2009 34th IEEE Photovoltaic Specialists Conference, Philadelphia, PA, USA, 7–12 June 2009; Volumes 1–3, pp. 698–703.
- Liu, W.L.; Chang, Y.C.; Hsieh, S.H.; Chen, W.J. Effects of Anions in electrodeposition baths on morphologies of Zinc Oxide Thin Films. Int. J. Electrochem. Sci. 2013, 8, 983–990. [Google Scholar]
- Šulčiūtė, A.; Valatka, E. Electrodeposition and photoelectrocatalytic activity of ZnO films on AISI 304 type steel. Mater. Sci. 2012, 18, 318–324. [Google Scholar] [CrossRef]
- Khrypunov, G.; Klochko, N.; Volkova, N.; Kopach, V.; Lyubov, V.; Klepikova, K. Pulse and direct current electrodeposition of zinc oxide layers for solar cells with extra thin absorbers. In Proceedings of the World Renewable Energy Congress (WREC-2011), Linköping, Sweden, 8–13 May 2011.
- Li, G.-R.; Lu, X.H.; Qu, D.L.; Yao, C.Z.; Zheng, F.L.; Bu, Q.; Dawa, C.R.; Tong, Y.X. Electrochemical growth and control of ZnO dendritic structures. J. Phys. Chem. C 2007, 111, 6678–6683. [Google Scholar] [CrossRef]
- Abd-Ellah, M.; Moghimi, N.; Zhang, L.; Heinig, N.F.; Zhao, L.; Thomas, J.P.; Leung, K. Effect of Electrolyte Conductivity on Controlled Electrochemical Synthesis of Zinc Oxide Nanotubes and Nanorods. J. Phys. Chem. C 2013, 117, 6794–6799. [Google Scholar] [CrossRef]
- Anpo, M.; Nakaya, H.; Kodama, S.; Kubokawa, Y.; Domen, K.; Onishi, T. Photocatalysis over binary metal oxides. Enhancement of the photocatalytic activity of titanium dioxide in titanium-silicon oxides. J. Phys. Chem. 1986, 90, 1633–1636. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, G.; Bahnemann, D.W. Photoelectrocatalytic materials for environmental applications. J. Mater. Chem. 2009, 19, 5089–5121. [Google Scholar] [CrossRef]
- Lai, C.W.; Juan, J.C.; Ko, W.B.; Hamid, S.B.A. An overview: Recent development of titanium oxide nanotubes as photocatalyst for dye degradation. Int. J. Photoenergy 2014, 2014. [Google Scholar] [CrossRef]
- Bessegato, G.G.; Guaraldo, T.T.; Zanoni, M.V.B. Enhancement of Photoelectrocatalysis Efficiency by Using Nanostructured Electrodes. Mod. Electrochem. Methods Nano Surf. Corros. Sci. 2014, 271–391. [Google Scholar] [CrossRef]
- Shao, D.; Sun, H.; Xin, G.; Lian, J.; Sawyer, S. High quality ZnO–TiO2 core–shell nanowires for efficient ultraviolet sensing. Appl. Surf. Sci. 2014, 314, 872–876. [Google Scholar] [CrossRef]
- Hernández, S.; Cauda, V.; Hidalgo, D.; Rivera, V.F.; Manfredi, D.; Chiodoni, A.; Pirri, F.C. Fast and low-cost synthesis of 1D ZnO–TiO2 core–shell nanoarrays: Characterization and enhanced photo-electrochemical performance for water splitting. J. Alloys Compd. 2014, 615, S530–S537. [Google Scholar] [CrossRef]
- Dao, T.; Dang, C.; Han, G.; Hoang, C.; Yi, W.; Narayanamurti, V.; Nagao, T. Chemically synthesized nanowire TiO2/ZnO core-shell pn junction array for high sensitivity ultraviolet photodetector. Appl. Phys. Lett. 2013, 103, 193119. [Google Scholar] [CrossRef]
- Lin, L.; Yang, Y.; Men, L.; Wang, X.; He, D.; Chai, Y.; Zhao, B.; Ghoshroy, S.; Tang, Q. A highly efficient TiO2@ ZnO n–p–n heterojunction nanorod photocatalyst. Nanoscale 2013, 5, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Panigrahi, S.; Basak, D. Core–shell TiO2@ ZnO nanorods for efficient ultraviolet photodetection. Nanoscale 2011, 3, 2336–2341. [Google Scholar] [CrossRef] [PubMed]
- Exarhos, G.J.; Sharma, S.K. Influence of processing variables on the structure and properties of ZnO films. Thin Solid Films 1995, 270, 27–32. [Google Scholar] [CrossRef]
- Schumm, M.; Koerdel, M.; Morhange, J.; Golacki, Z.; Grasza, K.; Skupinski, P.; Szuszkiewicz, W.; Zhou, H.; Malik, V.; Kalt, H. Analysis of the vibrational properties of Zn1-xCoxO by Raman spectroscopy. J. Phys. Conf. Ser. 2007, 92. [Google Scholar] [CrossRef]
- Alim, K.A.; Fonoberov, V.A.; Balandin, A.A. Origin of the optical phonon frequency shifts in ZnO quantum dots. Appl. Phys. Lett. 2005, 86, 53103. [Google Scholar] [CrossRef]
- Zhang, R.; Yin, P.G.; Wang, N.; Guo, L. Photoluminescence and Raman scattering of ZnO nanorods. Solid State Sci. 2009, 11, 865–869. [Google Scholar] [CrossRef]
- Naumkin, A.V.; Kraut-Vass, A.; Gaarenstroom, S.W.; Powell, C.J. NIST X-ray Photoelectron Spectroscopy Database; National Institute of Standards and Technology (NIST): Gaithersburg, MD, USA, 2012. [Google Scholar]
- Nefedov, V.; Salyn, Y.V.; Leonhardt, G.; Scheibe, R. A comparison of different spectrometers and charge corrections used in X-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 1977, 10, 121–124. [Google Scholar] [CrossRef]
- Hosseini, S.; Sarsari, I.A.; Kameli, P.; Salamati, H. Effect of Ag doping on structural, optical, and photocatalytic properties of ZnO nanoparticles. J. Alloys Compd. 2015, 640, 408–415. [Google Scholar] [CrossRef]
- Sahu, R.K.; Ganguly, K.; Mishra, T.; Mishra, M.; Ningthoujam, R.; Roy, S.; Pathak, L. Stabilization of intrinsic defects at high temperatures in ZnO nanoparticles by Ag modification. J. Colloid Interface Sci. 2012, 366, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ganguly, K.; Mishra, T.; Mishra, M.; Ningthoujam, R.; Roy, S.; Pathak, L. Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci. Rep. 2014, 4. [Google Scholar] [CrossRef] [PubMed]
- Al-Gaashani, R.; Radiman, S.; Daud, A.R.; Tabet, N.; Al-Douri, Y. XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram. Int. 2013, 39, 2283–2292. [Google Scholar] [CrossRef]
- Zheng, J.; Song, J.; Li, X.; Jiang, Q.; Lian, J. Experimental and first-principle investigation of Cu-doped ZnO ferromagnetic powders. Cryst. Res. Technol. 2011, 46, 1143–1148. [Google Scholar] [CrossRef]
- Chong, M.N.; Jin, B.; Chow, C.W.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-W.; Lee, D.-S.; Chen, H.-J. Preferential oxidation of CO in H2 stream on Au/ZnO–TiO2 catalysts. Int. J. Hydrogen Energy 2012, 37, 15140–15155. [Google Scholar] [CrossRef]
- Soares, J.M.; Morrall, P.; Crossley, A.; Harris, P.; Bowker, M. Catalytic and noncatalytic CO oxidation on Au/TiO2 catalysts. J. Catal. 2003, 219, 17–24. [Google Scholar] [CrossRef]
- Casaletto, M.; Longo, A.; Martorana, A.; Prestianni, A.; Venezia, A. XPS study of supported gold catalysts: The role of Au0 and Au+ δ species as active sites. Surf. Interface Anal. 2006, 38, 215–218. [Google Scholar] [CrossRef]
- Moreau, F.; Bond, G.C. Influence of the surface area of the support on the activity of gold catalysts for CO oxidation. Catal. Today 2007, 122, 215–221. [Google Scholar] [CrossRef]
- Tabakova, T.; Idakiev, V.; Andreeva, D.; Mitov, I. Influence of the microscopic properties of the support on the catalytic activity of Au/ZnO, Au/ZrO2, Au/Fe2O3, Au/Fe2O3–ZnO, Au/Fe2O3–ZrO2 catalysts for the WGS reaction. Appl. Catal. A Gen. 2000, 202, 91–97. [Google Scholar] [CrossRef]
- Moulder, J.F.; Chastain, J.; King, R.C. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Physical Electronics Eden Prairie: Chanhassen, MN, USA, 1995. [Google Scholar]
- Shankar, K.; Mor, G.K.; Prakasam, H.E.; Yoriya, S.; Paulose, M.; Varghese, O.K.; Grimes, C.A. Highly-ordered TiO2 nanotube arrays up to 220 µm in length: Use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 2007, 18, 065707. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, G.; Yan, K. TiO2 nanotubes for hydrogen generation by photocatalytic water splitting in a two-compartment photoelectrochemical cell. Int. J. Hydrogen Energy 2011, 36, 15502–15508. [Google Scholar] [CrossRef]
- Ong, K.G.; Varghese, O.K.; Mor, G.K.; Grimes, C.A. Numerical simulation of light propagation through highly-ordered titania nanotube arrays: Dimension optimization for improved photoabsorption. J. Nanosci. Nanotechnol. 2005, 5, 1801–1808. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Amini, A.; Zhu, C.; Xu, Z.; Song, H.; Wang, N. Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures. Sci. Rep. 2014, 4. [Google Scholar] [CrossRef] [PubMed]
- Asthana, A.; Momeni, K.; Prasad, A.; Yap, Y.; Yassar, R. On the correlation of crystal defects and band gap properties of ZnO nanobelts. Appl. Phys. A 2011, 105, 909–914. [Google Scholar] [CrossRef]
- Hernández, S.; Cauda, V.; Chiodoni, A.; Dallorto, S.; Sacco, A.; Hidalgo, D.; Celasco, E.; Pirri, C.F. Optimization of 1D ZnO@ TiO2 Core–Shell Nanostructures for Enhanced Photoelectrochemical Water Splitting under Solar Light Illumination. ACS Appl. Mater. Interfaces 2014, 6, 12153–12167. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Zamani, R.; Fábrega, C.; Shavel, A.; Flox, C.; Ibáñez, M.; Andreu, T.; López, A.M.; Arbiol, J.; Morante, J.R. Solution-growth and optoelectronic performance of ZnO: Cl/TiO2 and ZnO: Cl/ZnxTiOy/TiO2 core–shell nanowires with tunable shell thickness. J. Phys. D Appl. Phys. 2012, 45, 415301. [Google Scholar] [CrossRef]
- Leelavathi, A.; Madras, G.; Ravishankar, N. Origin of enhanced photocatalytic activity and photoconduction in high aspect ratio ZnO nanorods. Phys. Chem. Chem. Phys. 2013, 15, 10795–10802. [Google Scholar] [CrossRef] [PubMed]
- Kishwar, S.; Hasan, K.U.; Alvi, N.; Klason, P.; Nur, O.; Willander, M. A comparative study of the electrodeposition and the aqueous chemical growth techniques for the utilization of ZnO nanorods on p-GaN for white light emitting diodes. Superlattices Microstruct. 2011, 49, 32–42. [Google Scholar] [CrossRef]
- Izaki, M.; Watase, S.; Takahashi, H. Room-temperature ultraviolet light-emitting zinc oxide micropatterns prepared by low-temperature electrodeposition and photoresist. Appl. Phys. Lett. 2003, 83, 4930–4932. [Google Scholar] [CrossRef]
- Dalchiele, E.; Giorgi, P.; Marotti, R.; Martın, F.; Ramos-Barrado, J.; Ayouci, R.; Leinen, D. Electrodeposition of ZnO thin films on n-Si (100). Sol. Energy Mater. Sol. Cells 2001, 70, 245–254. [Google Scholar] [CrossRef]
- Postels, B.; Bakin, A.; Wehmann, H.-H.; Suleiman, M.; Weimann, T.; Hinze, P.; Waag, A. Electrodeposition of ZnO nanorods for device application. Appl. Phys. A 2008, 91, 595–599. [Google Scholar] [CrossRef]
- Li, M.C.; Jiang, L.L.; Zhang, W.Q.; Qian, Y.H.; Luo, S.Z.; Shen, J.N. Electrodeposition of nanocrystalline zinc from acidic sulfate solutions containing thiourea and benzalacetone as additives. J. Solid State Electrochem. 2007, 11, 549–553. [Google Scholar] [CrossRef]
- Sun, S.J.; Jiao, S.J.; Zhang, K.J.; Wang, D.B.; Gao, S.Y.; Li, H.T.; Wang, J.Z.; Yu, Q.J.; Guo, F.Y.; Zhao, L.C. Nucleation effect and growth mechanism of ZnO nanostructures by electrodeposition from aqueous zinc nitrate baths. J. Cryst. Growth 2012, 359, 15–19. [Google Scholar] [CrossRef]
- Zhang, L.S.; Chen, Z.G.; Tang, Y.W.; Jia, Z.J. Low temperature cathodic electrodeposition of nanocrystalline zinc oxide thin films. Thin Solid Films 2005, 492, 24–29. [Google Scholar] [CrossRef]
- Lupan, O.; Pauporté, T.; Viana, B.; Aschehoug, P. Electrodeposition of Cu-doped ZnO nanowire arrays and heterojunction formation with p-GaN for color tunable light emitting diode applications. Electrochim. Acta 2011, 56, 10543–10549. [Google Scholar] [CrossRef]
- Yoshida, T.; Komatsu, D.; Shimokawa, N.; Minoura, H. Mechanism of cathodic electrodeposition of zinc oxide thin films from aqueous zinc nitrate baths. Thin Solid Films 2004, 451, 166–169. [Google Scholar] [CrossRef]
- Goux, A.; Pauporté, T.; Chivot, J.; Lincot, D. Temperature effects on ZnO electrodeposition. Electrochim. Acta 2005, 50, 2239–2248. [Google Scholar] [CrossRef]
- Inamdar, A.I.; Mujawar, S.H.; Barman, S.R.; Bhosale, P.N.; Patil, P.S. The effect of bath temperature on the electrodeposition of zinc oxide thin films via an acetate medium. Semicond. Sci. Technol. 2008, 23, 6. [Google Scholar] [CrossRef]
- Fan, Z.; Lu, J.G. Zinc oxide nanostructures: Synthesis and properties. J. Nanosci. Nanotechnol. 2005, 5, 1561–1573. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, D.; Gómez, H.; Riveros, G.; Schrebler, R.; Henríquez, R.; Lincot, D. Effect of Zn (II) concentration on the morphology of zinc oxide nanorods during electrodeposition on very thin alumina membrane templates. J. Phys. Chem. C 2010, 114, 14854–14859. [Google Scholar] [CrossRef]
- Zarębska, K.; Kwiatkowski, M.; Gniadek, M.; Skompska, M. Electrodeposition of Zn (OH)2, ZnO thin films and nanosheet-like Zn seed layers and influence of their morphology on the growth of ZnO nanorods. Electrochim. Acta 2013, 98, 255–262. [Google Scholar] [CrossRef]
- Zoolfakar, A.S.; Kadir, R.A.; Rani, R.A.; Balendhran, S.; Liu, X.; Kats, E.; Bhargava, S.K.; Bhaskaran, M.; Sriram, S.; Zhuiykov, S. Engineering electrodeposited ZnO films and their memristive switching performance. Phys. Chem. Chem. Phys. 2013, 15, 10376–10384. [Google Scholar] [CrossRef] [PubMed]
- Inamdar, A.; Mujawar, S.; Patil, P. The influences of complexing agents on growth of zinc oxide thin films from zinc acetate bath and associated kinetic parameters. Int. J. Electrochem. Sci. 2007, 2, 797–808. [Google Scholar]
- Liao, C.-H.; Huang, C.-W.; Wu, J. Hydrogen production from semiconductor-based photocatalysis via water splitting. Catalysts 2012, 2, 490–516. [Google Scholar] [CrossRef]
Authors | Method | Findings | Reference |
---|---|---|---|
Dali Shao et al. (2014) |
|
| [33] |
Simelys Hernández et al. (2014) |
|
| [34] |
Dao et al. (2013) |
|
| [35] |
Lin Lin et al. (2012) |
|
| [36] |
Shrabani Panigrahi et al. (2011) |
|
| [37] |
Sample | Atomic Percentage (at %) | ||
---|---|---|---|
Zinc | Oxygen | Titanium | |
ZnO | 44.54 | 55.46 | Nil. |
One-cycle dip-coating TiO2-ZnO | 52.95 | 46.80 | 0.25 |
Two-cycle dip-coating TiO2-ZnO | 53.25 | 46.29 | 0.46 |
Three-cycle dip-coating TiO2-ZnO | 61.96 | 36.98 | 1.06 |
Sample | Length (nm) | Diameter (nm) | Aspect Ratio |
---|---|---|---|
ZnO | ~500 | ~75 | 6.7 |
0.25 at % TiO2-ZnO | ~500 | ~65 | 7.7 |
0.50 at % TiO2-ZnO | ~350 | ~60 | 5.8 |
1.0 at % TiO2-ZnO | ~350 | ~55 | 6.4 |
Sample | Zn2p3/2 | Ti2p1/2 | Ti2p3/2 | O1s |
---|---|---|---|---|
TiO2 | - | 464.5 | 458.8 | 530.0 |
0.25 at % TiO2-ZnO | 1021.7 | 463.7 | 458.1 | 531.3 |
1.0 at % TiO2-ZnO | 1021.5 | 463.9 | 458.2 | 529.7, 531.7 |
ZnO | 1021.8 | - | - | 530.5 |
Sample | UV Illumination | Solar Illumination |
---|---|---|
ZnO | 10.96 | 9.06 |
0.25 at % TiO2-ZnO | 19.78 | 14.75 |
0.50 at % TiO2-ZnO | 10.73 | 8.92 |
1.0 at % TiO2-ZnO | 9.40 | 6.52 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd Samad, N.A.; Lai, C.W.; Lau, K.S.; Abd Hamid, S.B. Efficient Solar-Induced Photoelectrochemical Response Using Coupling Semiconductor TiO2-ZnO Nanorod Film. Materials 2016, 9, 937. https://doi.org/10.3390/ma9110937
Abd Samad NA, Lai CW, Lau KS, Abd Hamid SB. Efficient Solar-Induced Photoelectrochemical Response Using Coupling Semiconductor TiO2-ZnO Nanorod Film. Materials. 2016; 9(11):937. https://doi.org/10.3390/ma9110937
Chicago/Turabian StyleAbd Samad, Nur Azimah, Chin Wei Lai, Kung Shiuh Lau, and Sharifah Bee Abd Hamid. 2016. "Efficient Solar-Induced Photoelectrochemical Response Using Coupling Semiconductor TiO2-ZnO Nanorod Film" Materials 9, no. 11: 937. https://doi.org/10.3390/ma9110937
APA StyleAbd Samad, N. A., Lai, C. W., Lau, K. S., & Abd Hamid, S. B. (2016). Efficient Solar-Induced Photoelectrochemical Response Using Coupling Semiconductor TiO2-ZnO Nanorod Film. Materials, 9(11), 937. https://doi.org/10.3390/ma9110937