Effects of BMP-2 Delivery in Calcium Phosphate Bone Graft Materials with Different Compositions on Bone Regeneration
Abstract
:1. Introduction
2. Results
2.1. Observations of Surface Morphology
2.2. Release Kinetics of RhBMP-2
2.3. Observation of Cell Attachment
2.4. Measurement of Cell Proliferation
2.5. Measurement of Alkaline Phosphatase (ALP) Activity
2.6. Histologic Findings in Animal Study
2.7. Histometric Findings in Animal Study
3. Discussion
4. Materials and Methods
4.1. Preparation of Porous Calcium Phosphate Coated with RhBMP-2
4.2. Release Kinetics of rhBMP-2
4.3. Observations of Cell Attachment
4.4. Measurement of Cell Proliferation
4.5. Measurement of Alkaline Phosphatase Activity (ALP)
4.6. In-Vivo Animal Study
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
HA | Hydroxyapatite |
β-TCP | β-tricalcium phosphate |
BCP | Biphasic calcium phosphate |
CPP | Calcium pyrophosphate |
TEM | Transmission electron microscope |
ALP | Alkaline phosphatase |
RhBMP-2 | Recombinant human bone morphogenetic protein-2 |
SEM | Scanning electron microscope |
References
- McAllister, B.S.; Haghighat, K. Bone augmentation techniques. J. Periodontol. 2007, 78, 377–396. [Google Scholar] [CrossRef] [PubMed]
- Maté Sánchez de Val, J.E.; Calvo Guirado, J.L.; Ramírez Fernández, M.P.; Delgado Ruiz, R.A.; Mazón, P.; de Aza, P.N. In vivo behavior of hydroxyapatite/β-TCP/collagen scaffold in animal model. Histological, histomorphometrical, radiological, and SEM analysis at 15, 30, and 60 days. Clin. Oral Implant. Res. 2015. [Google Scholar] [CrossRef]
- Greenwald, A.S.; Boden, S.D.; Goldberg, V.M.; Khan, Y.; Laurencin, C.T.; Rosier, R.N. Bone-graft substitutes: Facts, fictions, and applications. J. Bone Jt. Surg. Am. 2001, 83, 98–103. [Google Scholar] [CrossRef]
- Bauer, T.W.; Muschler, G.F. Bone graft materials. An overview of the basic science. Clin. Orthop. Relat. Res. 2000, 371, 10–27. [Google Scholar] [CrossRef]
- Clavero, J.; Lundgren, S. Ramus or chin grafts for maxillary sinus inlay and local onlay augmentation: Comparison of donor site morbidity and complications. Clin. Implant Dent. Relat. Res. 2003, 5, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Ghanaati, S.; Barbeck, M.; Booms, P.; Lorenz, J.; Kirkpatrick, C.J.; Sader, R.A. Potential lack of “standardized” processing techniques for production of allogeneic and xenogeneic bone blocks for application in humans. Acta Biomater. 2014, 10, 3557–3562. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, A.; Lode, A.; Peters, F.; Gelinsky, M. Comparative evaluation of different calcium phosphate-based bone graft granules—An in vitro study with osteoblast-like cells. Clin. Oral Implant. Res. 2013, 24, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Kitsugi, T.; Yamamuro, T.; Nakamura, T.; Kotani, S.; Kocubo, T.; Takeuchi, H. Four calcium phosphate ceramics as bone substitutes for non-weight-bearing. Biomaterials 1993, 14, 216–224. [Google Scholar] [CrossRef]
- Kitsugi, T.; Yamamuro, T.; Nakamura, T.; Oka, M. Transmission electron microscopy observations at the interface of bone and four types of calcium phosphate ceramics with different calcium/ phosphorus molar ratios. Biomaterials 1995, 16, 1101–1107. [Google Scholar] [CrossRef]
- Lin, F.H.; Lin, C.C.; Lu, C.M.; Liu, H.C.; Sun, J.S.; Wang, C.Y. Mechanical properties and histological evaluation of sintered β-Ca2P2O7 with Na4P2O7·10H2O addition. Biomaterials 1995, 16, 793–802. [Google Scholar] [CrossRef]
- Lin, C.C.; Liao, C.J.; Sun, J.S.; Liu, H.C.; Lin, F.H. Prevascularized bone graft cultured in sintered porous β -Ca2P2O7 with 5 wt % Na4P2O7·10H2O addition ceramic chamber. Biomaterials 1996, 17, 1133–1140. [Google Scholar] [CrossRef]
- Misch, C.E.; Dietsh, F. Bone-grafting materials in implant dentistry. Implant Dent. 1993, 2, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Holmes, R.E.; Bucholz, R.W.; Mooney, V. Porous hydroxyapatite as a bone graft substitute in diaphyseal defects: A histometric study. J. Orthop. Res. 1987, 5, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Barralet, J.; Akao, M.; Aoki, H.; Aoki, H. Dissolution of dense carbonate apatite subcutaneously implanted in Wistar rats. J. Biomed. Mater. Res. 2000, 49, 176–182. [Google Scholar] [CrossRef]
- Chissov, V.I.; Sviridova, I.K.; Sergeeva, N.S.; Frank, G.A.; Kirsanova, V.A.; Achmedova, S.A.; Reshetov, I.V.; Filjushin, M.M.; Barinov, S.M.; Fadeeva, I.V.; et al. Study of in vivo biocompatibility and dynamics of replacement of rat shin defect with porous granulated bioceramic materials. Bull. Exp. Biol. Med. 2008, 146, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Zhou, H.; Lee, J. Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater. 2011, 7, 3813–3828. [Google Scholar] [CrossRef] [PubMed]
- Nevins, M.; Nevins, M.L.; Schupbach, P.; Kim, S.W.; Lin, Z.; Kim, D.M. A prospective, randomized controlled preclinical trial to evaluate different formulations of biphasic calcium phosphate in combination with a hydroxyapatite collagen membrane to reconstruct deficient alveolar ridges. J. Oral. Implantol. 2013, 39, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Klein, C.P.; Driessen, A.A.; de Groot, K.; van den Hooff, A. Biodegradation behavior of various calcium phosphate materials in bone tissue. J. Biomed. Mater. Res. 1983, 17, 769–784. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Chang, B.S.; Jeung, U.O.; Park, K.W.; Kim, M.S.; Lee, C.K. The first clinical trial of beta-calcium pyrophosphate as a novel bone graft extender in instrumented posterolateral lumbar fusion. Clin. Orthop. Surg. 2011, 3, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.S.; Huang, Y.C.; Tsuang, Y.H.; Chen, L.T.; Lin, F.H. Sintered dicalcium pyrophosphate increases bone mass in ovariectomized rats. J. Biomed. Mater. Res. 2002, 59, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Bye, F.L.; Krause, M.E.; Regezi, J.A.; Caffesse, R.G. Histologic evaluation of periodontal implants in a biologically “closed” model. J. Periodontol. 1987, 58, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Fleisch, H.; Bisaz, S. Mechanism of calcification: Inhibitory role of pyrophosphate. Nature 1962, 195, 911. [Google Scholar] [CrossRef] [PubMed]
- Hessle, L.; Johnson, K.A.; Anderson, H.C.; Narisawa, S.; Sali, A.; Goding, J.W.; Terkeltaub, R.; Millan, J.L. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc. Natl. Acad. Sci. USA 2002, 99, 9445–9449. [Google Scholar] [CrossRef] [PubMed]
- Polo, C.I.; Lima, J.L.; de Lucca, L.; Piacezzi, C.B.; Naclério-Homem Mda, G.; Arana-Chavez, V.E.; Sendyk, W.R. Effect of recombinant human bone morphogenetic protein 2 associated with a variety of bone substitutes on vertical guided bone regeneration in rabbit calvarium. J. Periodontol. 2013, 84, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Urist, M.R. Bone: Formation by autoinduction. Science 1965, 15, 893–899. [Google Scholar] [CrossRef]
- Ripamonti, U.; Reddi, A.H. Periodontal regeneration: Potential role of bone morphogenetic proteins. J. Periodontal Res. 1994, 29, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Jung, R.E.; Glauser, R.; Schärer, P.; Hämmerle, C.H.; Sailer, H.F.; Weber, F.E. Effect of rhBMP-2 on guided bone regeneration in humans. Clin. Oral Implant. Res. 2003, 14, 556–568. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, T.; Kinoshita, A.; Takahashi, K.; Oda, S.; Ishikawa, I. Bone regeneration by recombinant human bone morphogenetic protein-2 in rat mandibular defects. An experimental model of defect filling. J. Periodontol. 1999, 70, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Govender, S.; Csimma, C.; Genant, H.K.; Valentin-Opran, A.; Amit, Y.; Arbel, R.; Chiron, P. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: A prospective, controlled, randomized study of four hundred and fifty patients. J. Bone Jt. Surg. Am. 2002, 84, 2123–2134. [Google Scholar] [CrossRef]
- Jung, R.E.; Windisch, S.I.; Eggenschwiler, A.M.; Thoma, D.S.; Weber, F.E.; Hämmerle, C.H. A randomized-controlled clinical trial evaluating clinical and radiological outcomes after 3 and 5 years of dental implants placed in bone regenerated by means of GBR techniques with or without the addition of BMP-2. Clin. Oral Implant. Res. 2009, 20, 660–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, Y.S.; Seo, J.Y.; Oh, S.H.; Kim, J.H.; Kim, S.T.; Park, Y.B.; Moon, H.S. The effects of ErhBMP-2-/EGCG-coated BCP bone substitute on dehiscence around dental implants in dogs. Oral Dis. 2014, 20, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Del Fabbro, M.; Rosano, G.; Taschieri, S. Implant survival rates after maxillary sinus augmentation. Eur. J. Oral Sci. 2008, 116, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Guarino, V.; Causa, F.; Ambrosio, L. Bioactive scaffolds for bone and ligament tissue. Expert Rev. Med. Devices 2007, 4, 405–418. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.I.; Asahina, I.; Ohmamiuda, K.; Takahashi, K.; Yokota, S.; Enomoto, S. Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhBMP-2. Biomaterials 2001, 22, 1643–1651. [Google Scholar] [CrossRef]
- Raynaud, S.; Champion, E.; Bernache-Assollant, D.; Thomas, P. Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials 2002, 23, 1065–1072. [Google Scholar] [CrossRef]
- Sigurdsson, T.J.; Nygaard, L.; Tatakis, D.N.; Fu, E.; Turek, T.J.; Jin, L.; Wozney, J.M.; Wikesjö, U.M. Periodontal repair in dogs: Evaluation of rhBMP-2 carriers. Int. J. Periodontics Restor. Dent. 1996, 16, 524–537. [Google Scholar]
- Hunt, D.R.; Jovanovic, S.A.; Wikesjö, U.M.; Wozney, J.M.; Bernard, G.W. Hyaluronan supports recombinant human bone morphogenetic protein-2 induced bone reconstruction of advanced alveolar ridge defects in dogs. A pilot study. J. Periodontol. 2001, 72, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Boyne, P.J.; Lilly, L.C.; Marx, R.E.; Moy, P.K.; Nevins, M.; Spagnoli, D.B.; Triplett, R.G. De novo bone induction by recombinant human bone morphogenetic protein-2 (rhBMP-2) in maxillary sinus floor augmentation. J. Oral Maxillofac. Surg. 2005, 63, 1693–1707. [Google Scholar] [CrossRef] [PubMed]
- Huh, J.B.; Kim, S.E.; Song, S.K.; Yun, M.J.; Shim, J.S.; Lee, J.Y.; Shin, S.W. The effect of immobilization of heparin and bone morphogenic protein-2 to bovine bone substitute on osteoblast-like cell’s function. J. Adv. Prosthodont. 2011, 3, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Deligianni, D.D.; Katsala, N.D.; Koutsoukos, P.G.; Missirlis, Y.F. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials 2001, 22, 87–96. [Google Scholar] [CrossRef]
- Jang, J.E.; Kim, H.M.; Kim, H.S.; Jeon, D.Y.; Park, C.H.; Kwon, S.Y.; Chung, J.W.; Khang, G.S. Inflammatory responses to hydroxyapatite/poly (lactic-co-glycolic acid) scaffolds with variation of compositions. Polym. Korea 2014, 38, 156–163. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-C.; Bae, E.-B.; Kim, S.-E.; Kim, S.-Y.; Choi, K.-H.; Choi, J.-W.; Bae, J.-H.; Ryu, J.-J.; Huh, J.-B. Effects of BMP-2 Delivery in Calcium Phosphate Bone Graft Materials with Different Compositions on Bone Regeneration. Materials 2016, 9, 954. https://doi.org/10.3390/ma9110954
Park J-C, Bae E-B, Kim S-E, Kim S-Y, Choi K-H, Choi J-W, Bae J-H, Ryu J-J, Huh J-B. Effects of BMP-2 Delivery in Calcium Phosphate Bone Graft Materials with Different Compositions on Bone Regeneration. Materials. 2016; 9(11):954. https://doi.org/10.3390/ma9110954
Chicago/Turabian StylePark, Jin-Chul, Eun-Bin Bae, Se-Eun Kim, So-Yun Kim, Kyung-Hee Choi, Jae-Won Choi, Ji-Hyeon Bae, Jae-Jun Ryu, and Jung-Bo Huh. 2016. "Effects of BMP-2 Delivery in Calcium Phosphate Bone Graft Materials with Different Compositions on Bone Regeneration" Materials 9, no. 11: 954. https://doi.org/10.3390/ma9110954
APA StylePark, J. -C., Bae, E. -B., Kim, S. -E., Kim, S. -Y., Choi, K. -H., Choi, J. -W., Bae, J. -H., Ryu, J. -J., & Huh, J. -B. (2016). Effects of BMP-2 Delivery in Calcium Phosphate Bone Graft Materials with Different Compositions on Bone Regeneration. Materials, 9(11), 954. https://doi.org/10.3390/ma9110954