Electrochemical Properties of LLTO/Fluoropolymer-Shell Cellulose-Core Fibrous Membrane for Separator of High Performance Lithium-Ion Battery
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of LLTO Nanoparticles and Co-Axial Electrospinning of LLTO Composite Nanofibrous Membrane
2.3. Characterizations and Electrochemical Evaluation
3. Results and Discussion
3.1. Structure of LLTO and Composite Nanofibrous Membrane
Authors | Forms | Methods | Diameters |
---|---|---|---|
Abhilash et al. [21] | Li0.5La0.5TiO3 | solid-state reaction | 80 nm |
Tang et al. [22] | Li0.34La0.51TiO2.94 | solid-state reaction | 100 nm |
Hua et al. [23] | Li0.27La0.54TiO2.945 | sol–gel | 1.5 μm |
Yoon et al. [24] | Li0.35La0.55TiO3 | solid-state reaction | 1.5–1.6 μm |
Geng et al. [25] | Li0.5La0.5TiO3 | sol–gel | 200 nm |
Murugesan et al. [26] | Li0.3La0.566TiO3 | Pechini-type | 100 nm |
Liang et al. [19] | Li0.125La0.625TiO3 | sol–gel | 200 nm |
Ionela et al. [27] | La0.66Li0.33TiO3 | sol-gel | 123.01 nm |
Anatolii Belous et al. [28] | Li0.5La0.5TiO3 | Solution precipitations | 100 nm |
Our work | Li0.35La0.55TiO3 | Thermal-solution | 69.4 nm |
3.2. Thermal Stability
3.3. Liquid Electrolyte Uptake
Separator | Thickness (μm) | Porosity (%) | Electrolyte Uptake (%) | Resistance (Ω) | Ionic Conductivity (mS·cm−1) |
---|---|---|---|---|---|
PVDF-HFP/cellulose | 59 | 47.88 | 140 | 1.107 | 2.082 |
2% LLTO | 48 | 66.36 | 355 | 0.415 | 4.518 |
5% LLTO | 47 | 69.77 | 384 | 0.258 | 7.116 |
8% LLTO | 37 | 67.45 | 487 | 0.104 | 13.897 |
3.4. Electrochemical and Battery Performance
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fang, M.-D.; Ho, T.-S.; Yen, J.-P.; Lin, Y.-R.; Hong, J.-L.; Wu, S.-H.; Jow, J.-J. Preparation of advanced carbon anode materials from mesocarbon microbeads for use in high C-rate lithium ion batteries. Materials 2015, 8, 3550–3561. [Google Scholar] [CrossRef]
- Huang, X.S. Evaluation of a polymethylpentene fiber mat formed directly on an anode as a battery separator. J. Membr. Sci. 2014, 466, 331–337. [Google Scholar] [CrossRef]
- Liang, X.X.; Yang, Y.; Jin, X.; Huang, Z.L.; Kang, F.Y. The high performances of SiO2/Al2O3-coated electrospun polyimide fibrous separator for lithium-ion battery. J. Membr. Sci. 2015, 493, 1–7. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, P.; Huang, S.H.; He, X.Y.; Yang, P.T.; Wu, D.Z.; Sun, D.H.; Zhao, J.B. Functional separator consisted of polyimide nonwoven fabrics and polyethylene coating layer for lithium-ion batteries. J. Power Sour. 2015, 298, 158–165. [Google Scholar] [CrossRef]
- Cai, C.; Wang, Y. Novel nanocomposite materials for advanced Li-ion rechargeable batteries. Materials 2009, 2, 1205–1238. [Google Scholar] [CrossRef]
- Liu, J.S.; Li, W.S.; Zuo, X.X.; Liu, S.Q.; Li, Z. Polyethylene-supported polyvinylidene fluoride–cellulose acetate butyrate blended polymer electrolyte for lithium ion battery. J. Power Sour. 2013, 226, 101–106. [Google Scholar] [CrossRef]
- Xu, Q.; Kong, Q.S.; Liu, Z.H.; Wang, X.J.; Liu, R.Z.; Zhang, J.J.; Yue, L.P.; Duan, Y.L.; Cui, G.L. Cellulose/Polysulfonamide Composite Membrane as a High Performance Lithium-Ion Battery Separator. ACS Sustain. Chem. Eng. 2014, 2, 194–199. [Google Scholar] [CrossRef]
- Xiao, S.Y.; Yang, Y.Q.; Li, M.X.; Wang, F.X.; Chang, Z.; Wu, Y.P.; Liu, X. A composite membrane based on a biocompatible cellulose as a host of gel polymer electrolyte for lithium ion batteries. J. Power Sour. 2014, 270, 53–58. [Google Scholar] [CrossRef]
- Göeren, A.; Costa, C.M.; Tamaño Machiavello, M.N.; Cíntora-Juárez, D.; Nunes-Pereira, J.; Tirado, J.L.; Silva, M.M.; Gomez Ribelles, J.L.; Lanceros-Méndez, S. Effect of the degree of porosity on the performance of poly (vinylidene fluoride-trifluoroethylene)/poly (ethylene oxide) blend membranes for lithium-ion battery separators. Solid State Ion. 2015, 280, 1–9. [Google Scholar] [CrossRef]
- Seidel, S.M.; Jeschke, S.; Vettikuzha, P.; Wiemhoefer, H.D. PVDF-HFP/ether-modified polysiloxane membranes obtained via airbrush spraying as active separators for application in lithium ion batteries. Chem. Commun. 2015, 51, 12048–12051. [Google Scholar] [CrossRef] [PubMed]
- Shayapat, J.; Chung, O.H.; Park, J.S. Electrospun polyimide-composite separator for lithium-ion batteries. Electrochim. Acta 2015, 170, 110–121. [Google Scholar] [CrossRef]
- Yanilmaz, M.; Zhang, X.W. Polymethylmethacrylate/Polyacrylonitrile Membranes via Centrifugal Spinning as Separator in Li-Ion Batteries. Polymers 2015, 7, 629–643. [Google Scholar] [CrossRef]
- Huang, F.L.; Xu, Y.F.; Peng, B.; Su, Y.F.; Jiang, F.; Hsieh, Y.L.; Wei, Q.F. Coaxial Electrospun Cellulose-Core Fluoropolymer-Shell Fibrous Membrane from Recycled Cigarette Filter as Separator for High Performance Lithium-Ion Battery. ACS Sustain. Chem. Eng. 2015, 3, 932–940. [Google Scholar] [CrossRef]
- Zhu, X.M.; Jiang, X.Y.; Ai, X.P.; Yang, H.X.; Cao, Y.L. A Highly Thermostable Ceramic-Grafted Microporous Polyethylene Separator for Safer Lithium-Ion Batteries. ACS Appl. Mater. Inter. 2015, 7, 24119–24126. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.X.; Wang, Z.Y.; Shi, L.Y.; Ma, Y.; Yuan, S.; Sun, L.N.; Zhao, Y.; Zhang, M.H.; Zhu, J.F. Layer-by-Layer Deposition of Organic-Inorganic Hybrid Multilayer on Microporous Polyethylene Separator to Enhance the Electrochemical Performance of Lithium-Ion Battery. ACS Appl. Mater. Inter. 2015, 37, 20678–20686. [Google Scholar] [CrossRef] [PubMed]
- Liang, F.; Hayashi, K. A High-Energy-Density Mixed-Aprotic-Aqueous Sodium-Air Cell with a Ceramic Separator and a Porous Carbon Electrode. J. Electrochem. Soc. 2015, 162, A1215–A1219. [Google Scholar] [CrossRef]
- Inaguma, Y.; Nakashima, M. A rechargeable lithium-air battery using a lithium ion-conducting lanthanum lithium titanate ceramics as an electrolyte separator. J. Power Sour. 2013, 228, 53–58. [Google Scholar] [CrossRef]
- Piana, M.; Wandt, J.; Meini, S.; Buchberger, I.; Tsiouvaras, N.; Gasteiger, H.A. Stability of a Pyrrolidinium-Based Ionic Liquid in Li-O2 Cells. J. Electrochem. Soc. 2014, 161, A1992–A2001. [Google Scholar] [CrossRef]
- Liang, Y.Z.; Ji, L.W.; Guo, B.K.; Lin, Z.; Yao, Y.F.; Li, Y.; Alcoutlabi, M.; Qiu, Y.P.; Zhang, X.W. Preparation and electrochemical characterization of ionic-conducting lithium lanthanum titanate oxide/polyacrylonitrile submicron composite fiber-based lithium-ion battery separators. J. Power Sour. 2011, 196, 436–441. [Google Scholar] [CrossRef]
- Zhang, X.W.; Ji, L.W.; Toprakci, O.; Liang, Y.Z.; Alcoutlabi, M. Electrospun Nanofiber-Based Anodes, Cathodes, and Separators for Advanced Lithium-Ion Batteries. Polym. Rev. 2011, 51, 239–264. [Google Scholar] [CrossRef]
- Abhilasha, K.P.; Christopher Selvina, P.; Nalinib, B.; Nithyadharsenic, P.; Pillai, B.C. Investigations on pure and Ag doped lithium lanthanum titanate (LLTO) nanocrystalline ceramic electrolytes for rechargeable lithium-ion batteries. Ceram. Int. 2013, 39, 947–952. [Google Scholar] [CrossRef]
- Tang, H.; Xu, J. Enhanced electrochemical performance of LiFePO4 coated with Li0.34La0.51TiO2.94 by rheological phase reaction method. Mater. Sci. Eng. B 2013, 178, 1503–1508. [Google Scholar] [CrossRef]
- Hua, C.X.; Fang, X.P.; Wang, Z.X.; Chen, L.Q. Lithium storage in perovskite lithium lanthanum titanate. Electrochem. Commun. 2013, 32, 5–8. [Google Scholar] [CrossRef]
- Yoon, J.; Hunter, G.; Akbar, S.; Dutta, P.K. Interface reaction and its effect on the performance of a CO2 gas sensor based on Li0.35La0.55TiO3 electrolyte and Li2CO3 sensing electrode. Sens. Actuators B Chem. 2013, 182, 95–103. [Google Scholar] [CrossRef]
- Geng, H.X.; Lan, J.L.; Mei, A.; Lin, Y.H.; Nan, C.W. Effect of sintering temperature on microstructure and transport properties of Li3xLa2/3−xTiO3 with different lithium contents. Electrochim. Acta 2011, 56, 3406–3414. [Google Scholar] [CrossRef]
- Vijayakumar, M.; Inaguma, Y.; Mashiko, W.; Crosnier-Lopez, M.P.; Bohnke, C. Synthesis of Fine Powders of Li3x La2/3-x TiO3 Perovskite by a Polymerizable Precursor Method. Chem. Mater. 2004, 16, 2719–2724. [Google Scholar] [CrossRef]
- Popovici, I.C.; Chirila, E.; Popescu, V.; Ciupina, V.; Pordan, G. Sol–gel preparation and characterization of perovskite lanthanum lithium titanate. J. Mater. Sci. 2007, 42, 3373–3377. [Google Scholar] [CrossRef]
- Belous, A.; Yanchevskiy, O.; V’yunov, O.; Bohnke, O.; Bohnke, C.; Berre, F.L.; Fourquet, J.L. Peculiarities of Li0.5La0.5TiO3 Formation During the Synthesis by Solid-State Reaction or Precipitation from Solutions. Chem. Mater. 2004, 16, 407–417. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, F.; Liu, W.; Li, P.; Ning, J.; Wei, Q. Electrochemical Properties of LLTO/Fluoropolymer-Shell Cellulose-Core Fibrous Membrane for Separator of High Performance Lithium-Ion Battery. Materials 2016, 9, 75. https://doi.org/10.3390/ma9020075
Huang F, Liu W, Li P, Ning J, Wei Q. Electrochemical Properties of LLTO/Fluoropolymer-Shell Cellulose-Core Fibrous Membrane for Separator of High Performance Lithium-Ion Battery. Materials. 2016; 9(2):75. https://doi.org/10.3390/ma9020075
Chicago/Turabian StyleHuang, Fenglin, Wenting Liu, Peiying Li, Jinxia Ning, and Qufu Wei. 2016. "Electrochemical Properties of LLTO/Fluoropolymer-Shell Cellulose-Core Fibrous Membrane for Separator of High Performance Lithium-Ion Battery" Materials 9, no. 2: 75. https://doi.org/10.3390/ma9020075
APA StyleHuang, F., Liu, W., Li, P., Ning, J., & Wei, Q. (2016). Electrochemical Properties of LLTO/Fluoropolymer-Shell Cellulose-Core Fibrous Membrane for Separator of High Performance Lithium-Ion Battery. Materials, 9(2), 75. https://doi.org/10.3390/ma9020075