Preparation of a Microspherical Silver-Reduced Graphene Oxide-Bismuth Vanadate Composite and Evaluation of Its Photocatalytic Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Synthesis of AgGB Composite
2.3. Characterization
2.4. Evaluation of Photocatalytic Activity
3. Results and Discussion
3.1. Pattern Analysis: XRD
3.2. Morphology and Composition Analysis: SEM, EDX, and Raman Scattering Spectra
3.3. Chemical States by XPS
3.4. Optical Properties: UV-vis DRS
3.5. Photocatalytic Activity for Degradation of RhB
3.6. Postulated Mechanism of RhB Degradation over Photocatalyst
3.7. Recycling and Stability of AgGB Composite
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
GO: graphene oxide |
rGO: reduced graphene oxide |
BiVO4: bismuth vanadate |
Bi-rGO: bismuth vanadate-reduced graphene oxide |
AgGB: A novel Ag-graphene oxide-bismuth vanadate |
LSPR: localized surface plasmon resonance |
RhB: rhodamine B dye |
XRD: X-ray diffraction |
SEM: scanning electron microscopy |
EDX: energy dispersive X-ray |
BET: Brunauer-Emmett-Teller |
XPS: X-ray photoelectron spectroscopy |
UV-vis DRS: UV-visible diffuse-reflectance spectroscopy |
FCC: face centered cubic |
References
- Ortega, Y.; Hernández, N.C.; Menéndez-Proupin, E.; Graciani, J.; Sanz, J.F. Nitrogen/gold codoping of the TiO2(101) anatase surface. A theoretical study based on dft calculations. Phys. Chem. Chem. Phys. 2011, 13, 11340–11350. [Google Scholar] [PubMed]
- Chen, L.; Zhang, Q.; Huang, R.; Yin, S.F.; Luo, S.L.; Au, C.T. Porous peanut-like Bi2O3-BiVO4 composites with heterojunctions: One-step synthesis and their photocatalytic properties. Dalton Trans. 2012, 41, 9513–9518. [Google Scholar] [PubMed]
- Xu, L.; Wei, Y.; Guo, W.; Guo, Y.; Guo, Y. One-pot solvothermal preparation and enhanced photocatalytic activity of metallic silver and graphene Co-doped BiVO4 ternary systems. Appl. Surf. Sci. 2015, 332, 682–693. [Google Scholar] [CrossRef]
- Bian, Z.-Y.; Zhu, Y.-Q.; Zhang, J.-X.; Ding, A.-Z.; Wang, H. Visible-light driven degradation of ibuprofen using abundant metal-loaded BiVO4 photocatalysts. Chemosphere 2014, 117, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Sayama, K.; Nomura, A.; Arai, T.; Sugita, T.; Abe, R.; Yanagida, M.; Oi, T.; Iwasaki, Y.; Abe, Y.; Sugihara, H. Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment. J. Phys. Chem. B 2006, 110, 11352–11360. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Tan, G.; Wei, S.; Ren, H.; Xia, A.; Luo, Y. Microwave hydrothermal synthesis and photocatalytic properties of TiO2/BiVO4 composite photocatalysts. Ceram. Int. 2013, 39, 8597–8604. [Google Scholar] [CrossRef]
- Park, H.S.; Ha, H.-W.; Ruoff, R.S.; Bard, A.J. On the improvement of photoelectrochemical performance and finite element analysis of reduced graphene oxide-BiVO4 composite electrodes. J. Electroanal. Chem. 2014, 716, 8–15. [Google Scholar] [CrossRef]
- Wang, A.; Shen, S.; Zhao, Y.; Wu, W. Preparation and characterizations of BiVO4/reduced graphene oxide nanocomposites with higher visible light reduction activities. J. Colloid Interface Sci. 2015, 445, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Krishnamoorthy, K.; Mohan, R.; Kim, S.J. Graphene oxide as a photocatalytic material. Appl. Phys. Lett. 2011, 98, 244101. [Google Scholar] [CrossRef]
- Cai, B.; Lv, X.; Gan, S.; Zhou, M.; Ma, W.; Wu, T.; Li, F.; Han, D.; Niu, L. Advanced visible-light-driven photocatalyst upon the incorporation of sulfonated graphene. Nanoscale 2013, 5, 1910–1917. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef] [PubMed]
- Thangavel, S.; Thangavel, S.; Raghavan, N.; Krishnamoorthy, K.; Venugopal, G. Visible-light driven photocatalytic degradation of methylene-violet by rGO/Fe3O4/ZnO ternary nanohybrid structures. J. Alloys Compd. 2016, 665, 107–112. [Google Scholar]
- Wang, H.; Cui, L.-F.; Yang, Y.; Sanchez Casalongue, H.; Robinson, J.T.; Liang, Y.; Cui, Y.; Dai, H. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 2010, 132, 13978–13980. [Google Scholar] [CrossRef] [PubMed]
- Ng, Y.H.; Iwase, A.; Kudo, A.; Amal, R. Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J. Phys. Chem. Lett. 2010, 1, 2607–2612. [Google Scholar] [CrossRef]
- Gao, L.; Qu, F.; Wu, X. Reduced graphene oxide-BiVO4 composite for enhanced photoelectrochemical cell and photocatalysis. Adv. Sci. Eng. Med. 2013, 5, 1485–1492. [Google Scholar]
- Arif Sher Shah, M.S.; Zhang, K.; Park, A.R.; Kim, K.S.; Park, N.-G.; Park, J.H.; Yoo, P.J. Single-step solvothermal synthesis of mesoporous Ag–TiO2-reduced graphene oxide ternary composites with enhanced photocatalytic activity. Nanoscale 2013, 5, 5093–5101. [Google Scholar] [CrossRef] [PubMed]
- Kudo, A.; Niishiro, R.; Iwase, A.; Kato, H. Effects of doping of metal cations on morphology, activity, and visible light response of photocatalysts. Chem. Phys. 2007, 339, 104–110. [Google Scholar] [CrossRef]
- Zhou, B.; Zhao, X.; Liu, H.; Qu, J.; Huang, C.P. Synthesis of visible-light sensitive m-BiVO4 (m = Ag, Co, and Ni) for the photocatalytic degradation of organic pollutants. Sep. Purif. Technol. 2011, 77, 275–282. [Google Scholar] [CrossRef]
- Liu, K.; Chang, Z.; Li, W.; Che, P.; Zhou, H. Preparation, characterization of Mo, Ag-loaded BiVO4 and comparison of their degradation of methylene blue. Sci. China Chem. 2012, 55, 1770–1775. [Google Scholar] [CrossRef]
- Balachandran, S.; Praveen, S.G.; Velmurugan, R.; Swaminathan, M. Facile fabrication of highly efficient, reusable heterostructured Ag-ZnO-CdO and its twin applications of dye degradation under natural sunlight and self-cleaning. RSC Adv. 2014, 4, 4353–4362. [Google Scholar] [CrossRef]
- Abdi, F.F.; Dabirian, A.; Dam, B.; van de Krol, R. Plasmonic enhancement of the optical absorption and catalytic efficiency of BiVO4 photoanodes decorated with Ag@SiO2 core-shell nanoparticles. Phys. Chem. Chem. Phys. 2014, 16, 15272–15277. [Google Scholar] [CrossRef] [PubMed]
- Cozzoli, P.D.; Comparelli, R.; Fanizza, E.; Curri, M.L.; Agostiano, A.; Laub, D. Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: A semiconductor/metal nanocomposite in homogeneous nonpolar solution. J. Am. Chem. Soc. 2004, 126, 3868–3879. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zou, Q.; Yuan, Y.; Ji, F.; Fan, Z.; Zhou, B. Preparation of BiVO4-graphene nanocomposites and their photocatalytic activity. J. Nanomater. 2014, 2014, 1–6. [Google Scholar] [CrossRef]
- Gawande, S.B.; Thakare, S.R. Graphene wrapped BiVO4 photocatalyst and its enhanced performance under visible light irradiation. Int. Nano Lett. 2012, 2, 1–7. [Google Scholar] [CrossRef]
- Zhu, M.; Chen, P.; Liu, M. Graphene oxide enwrapped Ag/Agx (x = Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst. ACS Nano 2011, 5, 4529–4536. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Dong, S.; Wang, Y.; Sun, J.; Li, Y.; Pi, Y.; Hu, L.; Sun, J. Reduced graphene oxide on a dumbbell-shaped BiVO4 photocatalyst for an augmented natural sunlight photocatalytic activity. J. Mol. Catal. A Chem. 2014, 387, 138–146. [Google Scholar] [CrossRef]
- Zhang, M.; Shao, C.; Li, X.; Zhang, P.; Sun, Y.; Su, C.; Zhang, X.; Ren, J.; Liu, Y. Carbon-modified BiVO4 microtubes embedded with Ag nanoparticles have high photocatalytic activity under visible light. Nanoscale 2012, 4, 7501–7509. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Sun, Y.; Cai, B.; Gan, S.; Han, D.; Niu, L.; Wu, T. Hierarchically z-scheme photocatalyst of Ag@AgCl decorated on BiVO4 (040) with enhancing photoelectrochemical and photocatalytic performance. Appl. Catal. B Environ. 2015, 170–171, 206–214. [Google Scholar] [CrossRef]
- Li, Z.; Wang, D.; Zhang, M.; Zhao, L. Enhancement of the thermal conductivity of polymer composites with Ag-graphene hybrids as fillers. Phys. Status Solidi (a) 2014, 211, 2142–2149. [Google Scholar] [CrossRef]
- Lin, X.; Shen, X.; Zheng, Q.; Yousefi, N.; Ye, L.; Mai, Y.-W.; Kim, J.-K. Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets. ACS Nano 2012, 6, 10708–10719. [Google Scholar] [CrossRef] [PubMed]
- Ge, L. Novel Pd/ BiVO4 composite photocatalysts for efficient degradation of methyl orange under visible light irradiation. Mater. Chem. Phys. 2008, 107, 465–470. [Google Scholar] [CrossRef]
- Chen, L.; Huang, R.; Ma, Y.-J.; Luo, S.-L.; Au, C.-T.; Yin, S.-F. Controllable synthesis of hollow and porous Ag/BiVO4 composites with enhanced visible-light photocatalytic performance. RSC Adv 2013, 3, 24354–24361. [Google Scholar] [CrossRef]
- Chaiwichian, S.; Inceesungvorn, B.; Wetchakun, K.; Phanichphant, S.; Kangwansupamonkon, W.; Wetchakun, N. Highly efficient visible-light-induced photocatalytic activity of Bi2WO6/BiVO4 heterojunction photocatalysts. Mater. Res. Bull. 2014, 54, 28–33. [Google Scholar] [CrossRef]
- Dong, S.; Cui, Y.; Wang, Y.; Li, Y.; Hu, L.; Sun, J.; Sun, J. Designing three-dimensional acicular sheaf shaped BiVO4/reduced graphene oxide composites for efficient sunlight-driven photocatalytic degradation of dye wastewater. Chem. Eng. J. 2014, 249, 102–110. [Google Scholar] [CrossRef]
- Hu, L.; Dong, S.; Li, Q.; Feng, J.; Pi, Y.; Liu, M.; Sun, J.; Sun, J. Facile synthesis of BiOF/Bi2O3/reduced graphene oxide photocatalyst with highly efficient and stable natural sunlight photocatalytic performance. J. Alloys Compd. 2015, 633, 256–264. [Google Scholar] [CrossRef]
- Zalfani, M.; van der Schueren, B.; Hu, Z.-Y.; Rooke, J.C.; Bourguiga, R.; Wu, M.; Li, Y.; van Tendeloo, G.; Su, B.-L. Novel 3Dom BiVO4/TiO2 nanocomposites for highly enhanced photocatalytic activity. J. Mater. Chem. A 2015, 3, 21244–21256. [Google Scholar] [CrossRef]
- Rong, X.; Qiu, F.; Zhang, C.; Fu, L.; Wang, Y.; Yang, D. Preparation of Ag–AgBr/TiO2–graphene and its visible light photocatalytic activity enhancement for the degradation of polyacrylamide. J. Alloys Compd. 2015, 639, 153–161. [Google Scholar] [CrossRef]
- Rochkind, M.; Pasternak, S.; Paz, Y. Using dyes for evaluating photocatalytic properties: A critical review. Molecules 2015, 20, 88–110. [Google Scholar] [CrossRef] [PubMed]
Sample | Mean Pore Size (nm) | Pore Volume (cm3g−1) | Surface Area (m2g−1) |
---|---|---|---|
Bi | 3.7889 | 0.001958 | 1.3211 |
Bi-rGO | 3.1674 | 0.003353 | 1.9372 |
AgGB-0.5 | 11.1333 | 0.026298 | 3.8862 |
AgGB-1 | 10.2568 | 0.023189 | 3.1494 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, M.; Xiong, S.; Wu, T.; Zhao, D.; Zhang, Q.; Fan, Z.; Zeng, Y.; Ji, F.; He, Q.; Xu, X. Preparation of a Microspherical Silver-Reduced Graphene Oxide-Bismuth Vanadate Composite and Evaluation of Its Photocatalytic Activity. Materials 2016, 9, 160. https://doi.org/10.3390/ma9030160
Du M, Xiong S, Wu T, Zhao D, Zhang Q, Fan Z, Zeng Y, Ji F, He Q, Xu X. Preparation of a Microspherical Silver-Reduced Graphene Oxide-Bismuth Vanadate Composite and Evaluation of Its Photocatalytic Activity. Materials. 2016; 9(3):160. https://doi.org/10.3390/ma9030160
Chicago/Turabian StyleDu, Mao, Shimin Xiong, Tianhui Wu, Deqiang Zhao, Qian Zhang, Zihong Fan, Yao Zeng, Fangying Ji, Qiang He, and Xuan Xu. 2016. "Preparation of a Microspherical Silver-Reduced Graphene Oxide-Bismuth Vanadate Composite and Evaluation of Its Photocatalytic Activity" Materials 9, no. 3: 160. https://doi.org/10.3390/ma9030160
APA StyleDu, M., Xiong, S., Wu, T., Zhao, D., Zhang, Q., Fan, Z., Zeng, Y., Ji, F., He, Q., & Xu, X. (2016). Preparation of a Microspherical Silver-Reduced Graphene Oxide-Bismuth Vanadate Composite and Evaluation of Its Photocatalytic Activity. Materials, 9(3), 160. https://doi.org/10.3390/ma9030160