Integrated Effects of Two Additives on the Enhanced Performance of PTB7:PC71BM Polymer Solar Cells
Abstract
:1. Introduction
2. Experimental Section
2.1. Fabrication of Solar Cells
- Film 1: PTB7:PC71BM,
- Film 2: PTB7:PC71BM, 1 wt % PS
- Film 3: PTB7:PC71BM, 3 v% DIO
- Film 4: PTB7:PC71BM, 1 wt % PS and 3 v% DIO
- Device 1: ITO/PEDOT:PSS/film1/LiF/Al
- Device 2: ITO/PEDOT:PSS/film2/LiF/Al
- Device 3: ITO/PEDOT:PSS/film3/LiF/Al
- Device 4: ITO/PEDOT:PSS/film4/LiF/Al
2.2. Photovoltaic Characterization
3. Results and Discussions
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lin, H.W.; Chang, J.H.; Huang, W.C.; Lin, Y.T.; Lin, L.Y.; Lin, F.; Wong, K.T.; Wang, H.F.; Ho, R.M.; Meng, H.F. Highly efficient organic solar cells using a solution-processed active layer with a small molecule donor and pristine fullerene. J. Mater. Chem. A 2014, 2, 3709–3714. [Google Scholar] [CrossRef]
- Mishra, A.; Bäuerle, P. Small molecule organic semiconductors on the move: Promises for future solar energy technology. Angew. Chem. Int. Ed. 2012, 51, 2020–2067. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zuo, Y.; Wan, X.; Long, G.; Zhang, Q.; Ni, W.; Liu, Y.; Li, Z.; He, G.; Li, C. Solution-processed and high-performance organic solar cells using small molecules with a benzodithiophene unit. J. Am. Chem. Soc. 2013, 135, 8484–8487. [Google Scholar] [CrossRef] [PubMed]
- Cabanetos, C.M.; El Labban, A.; Bartelt, J.A.; Douglas, J.D.; Mateker, W.R.; Fréchet, J.M.; McGehee, M.D.; Beaujuge, P.M. Linear side chains in benzo [1, 2-b: 4, 5-b’ 4dithiophene–thieno [3,4-c] pyrrole-4, 6-dione polymers direct self-assembly and solar cell performance. J. Am. Chem. Soc. 2013, 135, 4656–4659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dou, L.; Gao, J.; Richard, E.; You, J.; Chen, C.C.; Cha, K.C.; He, Y.; Li, G.; Yang, Y. Systematic investigation of benzodithiophene-and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells. J. Am. Chem. Soc. 2012, 134, 10071–10079. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Protoc. 2012, 6, 591–595. [Google Scholar] [CrossRef]
- Huang, Y.; Wen, W.; Mukherjee, S.; Ade, H.; Kramer, E.J.; Bazan, G.C. High-molecular-weight insulating polymers can improve the performance of molecular solar cells. Adv. Mater. 2014, 26, 4168–4172. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.; Kim, C.; Nguyen, T.Q. Small molecule solution-processed bulk heterojunction solar cells†. Chem. Mater. 2010, 23, 470–482. [Google Scholar] [CrossRef]
- Chen, W.; Nikiforov, M.P.; Darling, S.B. Morphology characterization in organic and hybrid solar cells. Energy Environ. Sci. 2012, 5, 8045–8074. [Google Scholar] [CrossRef]
- Betancur, R.; Romero-Gomez, P.; Martinez-Otero, A.; Elias, X.; Maymó, M.; Martorell, J. Transparent polymer solar cells employing a layered light-trapping architecture. Nat. Photonics 2013, 7, 995–1000. [Google Scholar] [CrossRef]
- Dennler, G.; Scharber, M.C.; Brabec, C.J. Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 2009, 21, 1323–1338. [Google Scholar] [CrossRef]
- Nikiforov, M.P.; Lai, B.; Chen, W.; Chen, S.; Schaller, R.D.; Strzalka, J.; Maser, J.; Darling, S.B. Detection and role of trace impurities in high-performance organic solar cells. Energy Environ. Sci. 2013, 6, 1513–1520. [Google Scholar] [CrossRef]
- Guo, S.; Cao, B.; Wang, W.; Moulin, J.F.; Müller-Buschbaum, P. Effect of alcohol treatment on the performance of ptb7:Pc71bm bulk heterojunction solar cells. ACS Appl. Mater. Interfaces 2015, 7, 4641–4649. [Google Scholar] [CrossRef] [PubMed]
- Foertig, A.; Kniepert, J.; Gluecker, M.; Brenner, T.; Dyakonov, V.; Neher, D.; Deibel, C. Nongeminate and geminate recombination in ptb7:Pcbm solar cells. Adv. Funct. Mater. 2014, 24, 1306–1311. [Google Scholar] [CrossRef]
- Liao, H.C.; Ho, C.C.; Chang, C.Y.; Jao, M.H.; Darling, S.B.; Su, W.F. Additives for morphology control in high-efficiency organic solar cells. Mater. today 2013, 16, 326–336. [Google Scholar] [CrossRef]
- Chen, W.; Darling, S.B. Understanding the role of additives in improving the performance of bulk heterojunction organic solar cells. Microsc. Microanal. 2015, 21, 2439–2440. [Google Scholar] [CrossRef]
- Guo, S.; Herzig, E.M.; Naumann, A.; Tainter, G.; Perlich, J.; Müller-Buschbaum, P. Influence of solvent and solvent additive on the morphology of ptb7 films probed via x-ray scattering. J. Phys. Chem. B 2013, 118, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Lou, S.J.; Szarko, J.M.; Xu, T.; Yu, L.; Marks, T.J.; Chen, L.X. Effects of additives on the morphology of solution phase aggregates formed by active layer components of high-efficiency organic solar cells. J. Am. Chem. Soc. 2011, 133, 20661–20663. [Google Scholar] [CrossRef] [PubMed]
- Perez, L.A.; Chou, K.W.; Love, J.A.; van der Poll, T.S.; Smilgies, D.M.; Nguyen, T.Q.; Kramer, E.J.; Amassian, A.; Bazan, G.C. Solvent additive effects on small molecule crystallization in bulk heterojunction solar cells probed during spin casting. Adv. Mater. 2013, 25, 6380–6384. [Google Scholar] [CrossRef] [PubMed]
- Kniepert, J.; Lange, I.; Heidbrink, J.; Kurpiers, J.; Brenner, T.J.; Koster, L.J.A.; Neher, D. Effect of solvent additive on generation, recombination, and extraction in ptb7:Pcbm solar cells: A conclusive experimental and numerical simulation study. J. Phys. Chem. C 2015, 119, 8310–8320. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, S.; Xu, Z.; Yang, Q.; Huang, D.; Xu, X. A simple method to adjust the morphology of gradient three-dimensional ptb7-th: Pc 71 bm polymer solar cells. Nanoscale 2015, 7, 5537–5544. [Google Scholar] [CrossRef] [PubMed]
- Hsin-Yi, C.; Lan, S.; Yang, P.C.; Lin, S.H.; Sun, J.Y.; Lin, C.F. Poly (3-hexylthiophene): Indene-c60 bisadduct morphology improvement by the use of polyvinylcarbazole as additive. Sol. Energy Mater. Sol. Cells 2013, 113, 90–95. [Google Scholar] [CrossRef]
- Bai, Y.; Yu, H.; Zhu, Z.; Jiang, K.; Zhang, T.; Zhao, N.; Yang, S.; Yan, H. High performance inverted structure perovskite solar cells based on a pcbm: Polystyrene blend electron transport layer. J. Mater. Chem. A 2015, 3, 9098–9102. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, S.; Xu, Z.; Gong, W.; Yang, Q.; Fan, X.; Xu, X. Influence of morphology of pcdtbt: Pc71bm on the performance of solar cells. Appl. Phys. A 2014, 114, 1361–1368. [Google Scholar] [CrossRef]
- Janssen, R.A.; Nelson, J. Factors limiting device efficiency in organic photovoltaics. Adv. Mater. 2013, 25, 1847–1858. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Xu, Z.; Xia, J.; Tsai, S.T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. For the bright future–bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 2010, 22, E135–E138. [Google Scholar] [CrossRef] [PubMed]
- Ochiai, S.; Imamura, S.; Kannappan, S.; Palanisamy, K.; Shin, P.K. Characteristics and the effect of additives on the nanomorphology of ptb7/pc 71 bm composite films. Curr. Appl. Phys. 2013, 13, S58–S63. [Google Scholar] [CrossRef]
- Hu, X.; Wang, M.; Huang, F.; Gong, X.; Cao, Y. 23% enhanced efficiency of polymer solar cells processed with 1-chloronaphthalene as the solvent additive. Synth. Met. 2013, 164, 1–5. [Google Scholar] [CrossRef]
- Malliaras, G.; Salem, J.; Brock, P.; Scott, C. Electrical characteristics and efficiency of single-layer organic light-emitting diodes. Phys. Rev. B 1998, 58, R13411. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, F.; Li, L.; An, Q.; Wang, J.; Zhang, J. The underlying reason of dio additive on the improvement polymer solar cells performance. Appl. Surf. Sci. 2014, 305, 221–226. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, F.; Li, L.; An, Q.; Zhang, J.; Tang, W.; Teng, F. Enhanced performance of polymer solar cells by dipole-assisted hole extraction. Sol. Energy Mater. Sol. Cells 2014, 130, 15–19. [Google Scholar] [CrossRef]
Doping Ratio | Voc (V) | Jsc (mA/cm2) | FF (%) | PCE (%) |
---|---|---|---|---|
0 wt % | 0.79 ± 0.01 | 10.47 ± 0.09 | 49.65 ± 0.05 | 4.11 ± 0.02 |
0.5 wt % | 0.79 ± 0.01 | 11.15 ± 0.08 | 46.61 ± 0.06 | 4.16 ± 0.02 |
1 wt % | 0.79 ± 0.01 | 10.60 ± 0.08 | 54.50 ± 0.04 | 4.56 ± 0.02 |
2 wt % | 0.80 ± 0.01 | 11.55 ± 0.09 | 46.68 ± 0.05 | 4.31 ± 0.02 |
5 wt % | 0.80 ± 0.01 | 10.07 ± 0.13 | 38.74 ± 0.08 | 3.12 ± 0.03 |
Voc (V) | Jsc (mA/cm2) | FF (%) | PCE (%) | Rsh (Ωcm2) | Rs (Ωcm2) | |
---|---|---|---|---|---|---|
Device 1 | 0.79 ± 0.01 | 10.47 ± 0.013 | 49.65 ± 0.02 | 4.11 ± 0.03 | 302.8 | 18.2 |
Device 2 | 0.79 ± 0.01 | 10.60 ± 0.012 | 54.50 ± 0.09 | 4.56 ± 0.02 | 311.5 | 8.56 |
Device 3 | 0.75 ± 0.01 | 14.23 ± 0.09 | 71.31 ± 0.05 | 7.61 ± 0.02 | 757.6 | 5.44 |
Device 4 | 0.76 ± 0.01 | 16.37 ± 0.08 | 71.68 ± 0.04 | 8.92 ± 0.02 | 915.8 | 4.24 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhao, S.; Xu, Z.; Zhao, J.; Huang, D.; Zhao, L. Integrated Effects of Two Additives on the Enhanced Performance of PTB7:PC71BM Polymer Solar Cells. Materials 2016, 9, 171. https://doi.org/10.3390/ma9030171
Wang L, Zhao S, Xu Z, Zhao J, Huang D, Zhao L. Integrated Effects of Two Additives on the Enhanced Performance of PTB7:PC71BM Polymer Solar Cells. Materials. 2016; 9(3):171. https://doi.org/10.3390/ma9030171
Chicago/Turabian StyleWang, Lin, Suling Zhao, Zheng Xu, Jiao Zhao, Di Huang, and Ling Zhao. 2016. "Integrated Effects of Two Additives on the Enhanced Performance of PTB7:PC71BM Polymer Solar Cells" Materials 9, no. 3: 171. https://doi.org/10.3390/ma9030171
APA StyleWang, L., Zhao, S., Xu, Z., Zhao, J., Huang, D., & Zhao, L. (2016). Integrated Effects of Two Additives on the Enhanced Performance of PTB7:PC71BM Polymer Solar Cells. Materials, 9(3), 171. https://doi.org/10.3390/ma9030171