Highly Conductive Carbon Fiber Reinforced Concrete for Icing Prevention and Curing
Abstract
:1. Introduction
2. Experimental Program and Materials
2.1. Materials and Sample Fabrication
- -
- 2.1% by weight of cement polycarboxylate-based superplasticizer was added to the mix.
- -
- -
- The oxidized CF material was poured in water and then ultrasound treatment was applied for 10 min with an ultrasound device model Hielschier UP200S [8].
2.2. Laboratory Conditions Tests (L.C.)
2.3. Prevention and Curing Tests
3. Results and Discussion
3.1. Laboratory Conditions Tests
3.2. Prevention Tests
3.3. Curing Tests
4. Conclusions
- Both AC and DC are feasible for increasing the specimen temperature.
- Fixed voltages of 20 V or 25 V allowed specimens both to prevent freezing and to increase their temperature above 0 °C in an initial environment of −15 °C curing process. Consequently, a fixed voltage of 20 V could be enough to make the specimen work as a heating element with a very reasonable amount of energy consumption.
- The mathematical model published in [26] was checked in laboratory conditions tests, showing a very good correlation, and therefore being applicable for this type of highly conductive concrete in the previously mentioned conditions.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chung, D.D.L. Multifunctional Cement-Based Materials; Marcel Dekker Inc.: New York, NY, USA, 2004. [Google Scholar]
- Pérez, A.; Climent, M.A.; Garcés, P. Electrochemical extraction of chlorides from reinforced concrete using a conductive cement paste as an anode. Corros. Sci. 2010, 52, 1576–1581. [Google Scholar] [CrossRef]
- Del Moral, B.; Galao, O.; Anton, C.; Climent, M.A.; Garcés, P. Usability of cement paste containing carbon nanofibres as an anode in electrochemical chloride extraction from concrete. Mater. Constr. 2013, 63, 39–48. [Google Scholar]
- Lu, S.N.; Xie, N.; Feng, L.C.; Zhong, J. Applications of nanostructured carbon materials in constructions: The state of the art. J. Nanomater. 2015, 501, 1–10. [Google Scholar] [CrossRef]
- Wang, B.; Guo, Z.; Han, Y.; Zhang, T. Electromagnetic wave absorbing properties of multi-walled carbon nanotube/cement composites. Constr. Build. Mater. 2013, 46, 98–103. [Google Scholar] [CrossRef]
- Sun, M.; Liew, R.J.Y.; Zhang, M.; Li, W. Development of cement-based strain sensor for health monitoring of ultra high strength concrete. Constr. Build. Mater. 2014, 65, 630–637. [Google Scholar] [CrossRef]
- Baeza, F.J.; Zornoza, E.; Andión, L.G.; Ivorra, S.; Garcés, P. Variables affecting strain sensing function in cementitious composites with carbon fibers. Comput. Concr. 2011, 8, 229–241. [Google Scholar] [CrossRef]
- Baeza, F.J.; Galao, O.; Zornoza, E.; Garcés, P. Multifunctional cement composites strain and damage sensors applied on reinforced concrete (RC) structural elements. Materials 2013, 6, 841–855. [Google Scholar] [CrossRef]
- Materazzi, A.; Ubertini, F.; D’Alessandro, A. Carbon nanotube cement based transducers for dynamic sensing of strain. Cem. Concr. Compos. 2013, 37, 2–11. [Google Scholar] [CrossRef]
- Ubertini, F.; Laflamme, S.; Ceylan, H.; Materazzi, A.L.; Cerni, G.; Saleem, H.; D’Alessandro, A.; Corradini, A. Novel nanocomposite technologies for dynamic monitoring of structures: A comparison between cement-based embeddable and soft elastomeric surface sensors. Smart Mater. Struct. 2014, 23, 045023. [Google Scholar] [CrossRef]
- Sanchez, F.; Ince, C. Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites. Compos. Sci. Technol. 2009, 69, 1310–1318. [Google Scholar] [CrossRef]
- Catalá, G.; Ramos-Fernández, E.V.; Zornoza, E.; Andión, L.G.; Garcés, P. Influence of the oxidation process of carbon materials on the mechanical properties of cement mortars. J. Mater. Civ. Eng. 2011, 23, 321–329. [Google Scholar] [CrossRef]
- Garcés, P.; Fraile, J.; Vilaplana-Ortego, E.; Cazorla, D.; Alcocel, E.G.; Andión, L.G. Effect of carbon fibres on the mechanical properties and corrosion levels of reinforced Portland cement mortars. Cem. Concr. Res. 2005, 35, 324–331. [Google Scholar] [CrossRef]
- Garcés, P.; Zornoza, E.; Alcocel, E.G.; Galao, O.; Andión, L.G. Mechanical properties and corrosion of CAC mortars with carbon fibers. Constr. Build. Mater. 2012, 34, 91–96. [Google Scholar] [CrossRef]
- Garcés, P.; Andión, L.G.; Varga, I.; Catalá, G.; Zornoza, E. Corrosion of steel reinforcement in structural concrete with carbon material addition. Corros. Sci. 2007, 49, 2557–2566. [Google Scholar] [CrossRef]
- Galao, O.; Zornoza, E.; Baeza, F.J.; Bernabeu, A.; Garcés, P. Effect of carbon nanofiber addition in the mechanical properties and durability of cementitious materials. Mater. Constr. 2012, 62, 343–357. [Google Scholar]
- Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Shah, S.P. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cem. Concr. Compos. 2010, 32, 110–115. [Google Scholar] [CrossRef]
- Giner, V.T.; Baeza, F.J.; Ivorra, S.; Zornoza, E.; Galao, O. Effect of steel and carbon fiber additions on the dynamic properties of concrete containing silica fume. Mater. Des. 2012, 34, 332–339. [Google Scholar] [CrossRef]
- Wen, S.; Chung, D.L.L. Carbon fiber-reinforced cement as a thermistor. Cem. Concr. Res. 1999, 29, 961–965. [Google Scholar] [CrossRef]
- Chung, D.D.L. Materials for thermal conduction. Appl. Therm. Eng. 2001, 21, 1593–1605. [Google Scholar] [CrossRef]
- Yehia, S.; Tuan, C. Conductive concrete overlay for bridge deck deicing. Am. Concr. Inst. Mater. J. 1999, 3, 382–390. [Google Scholar]
- Chung, D.D.L. Self-heating structural materials. Smart Mater. Struct. 2004, 13, 562–565. [Google Scholar] [CrossRef]
- Yehia, S.; Tuan, C.; Ferdon, D.; Chen, B. Conductive concrete overlay for bridge deck deicing: Mixture proportioning, optimization, and properties. Am. Concr. Inst. Mater. J. 2000, 2, 172–181. [Google Scholar]
- Tuan, C.Y.; Yehia, S. Electrical resistance heating of conductive concrete containing steel fibers and shavings. ACI Mater. J. 2004, 101, 65–71. [Google Scholar]
- Galao, O.; Baeza, F.J.; Zornoza, E.; Garcés, P. Self-heating function of carbon nanofiber cement pastes. Mater. Constr. 2014, 64, 1–11. [Google Scholar]
- Gomis, J.; Galao, O.; Gomis, V.; Zornoza, E.; Garcés, P. Self-heating and deicing conductive cement: Experimental study and modeling. Constr. Build. Mater. 2015, 75, 442–449. [Google Scholar] [CrossRef]
- Tang, Z.; Li, Z.; Qian, J.; Wang, K. Experimental study on deicing performance of carbon fiber reinforced conductive concrete. J. Mater. Sci. Technol. 2005, 21, 113–117. [Google Scholar]
- David, V. Economic assessment of the social costs of highway salting and the efficiency of substituting a new deicing material. J. Policy Anal. Manag. 1992, 11, 397–418. [Google Scholar]
- Yu, W.B.; Yi, X.; Guo, M.; Chen, L. State of the art and practice of pavement anti-icing and de-icing techniques. Sci. Cold Arid Reg. 2014, 6, 14–21. [Google Scholar]
- Wu, J.; Liu, J.; Yang, F. Three-phase composite conductive concrete for pavement deicing. Constr. Build. Mater. 2015, 75, 129–135. [Google Scholar] [CrossRef]
- Wu, J.; Yang, F.; Liu, J. Carbon fiber heating wire for pavement deicing. J. Test. Eval. 2015, 43, 574–581. [Google Scholar] [CrossRef]
- Xu, J.C.; Sui, Y.; Li, L.; Diao, B. Experimental study on the electrothermal effect of concrete reinforced with hybrid carbon and steel fiber. Appl. Mech. Mater. 2014, 490–491, 94–98. [Google Scholar] [CrossRef]
- Chu, H.; Zhang, Z.; Liu, Y.; Leng, J. Self-heating fiber reinforced polymer composite using meso/macropore carbon nanotube paper and its application in deicing. Carbon 2014, 66, 154–163. [Google Scholar] [CrossRef]
- Lai, J.; Qiu, J.; Chen, J.; Fan, H.; Wang, K. New Technology and experimental study on snow-melting heated pavement system in tunnel portal. Adv. Mater. Sci. Eng. 2015, 706536. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, Y.; Chen, W.; Chen, T.; Zhou, Y.; Li, H. Outdoor experiment of flexible sandwiched graphite-PET sheets based self-snow-thawing pavement. Cold Reg. Sci. Technol. 2016, 122, 10–17. [Google Scholar] [CrossRef]
- Muthumani, A.; Fay, L.; Akin, M.; Wang, S.; Gong, J.; Shi, X. Correlating lab and field tests for evaluation of deicing and anti-icing chemicals: A review of potential approaches. Cold Reg. Sci. Technol. 2014, 97, 21–32. [Google Scholar] [CrossRef]
- Xu, H.; Tan, Y. Modeling and operation strategy of pavement snow melting systems utilizing low-temperature heating fluids. Energy 2015, 80, 666–676. [Google Scholar] [CrossRef]
- Hou, Z.F.; Li, Z.Q.; Tang, Z.Q. Finite element analysis and design of electrically conductive concrete for roadway deicing or snow-melting system. ACI Mater. J. 2003, 100, 469–476. [Google Scholar]
- Li, H.; Zhang, Q.; Xiao, H. Self-deicing road system with a CNFP high-efficiency thermal source and MWCNT/cement-based high-thermal conductive composites. Cold Reg. Sci. Technol. 2013, 86, 22–35. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q.; Xiao, H. Analytic investigations of CNFP-based self-deicing road system on the deicing performance. Cold Reg. Sci. Technol. 2014, 103, 123–132. [Google Scholar] [CrossRef]
- Lai, Y.; Liu, Y.; Ma, D. Automatically melting snow on airport cement concrete pavement with carbon fiber grille. Cold Reg. Sci. Technol. 2014, 103, 57–62. [Google Scholar] [CrossRef]
- Kim, G.M.; Naeem, F.; Kim, H.K.; Lee, H.K. Heating and heat-dependent mechanical characteristics of CNT-embedded cementitious composites. Compos. Struct. 2016, 136, 162–170. [Google Scholar] [CrossRef]
- Liu, Z.; Hansen, W. Freezing characteristics of air-entrained concrete in the presence of deicing salt. Cem. Concr. Res. 2015, 74, 10–18. [Google Scholar] [CrossRef]
- Urban, J.; Kostelecká, M.; Klečka, T. Surface layer parameter of concrete in relation to deicing salt scaling resistance. Adv. Mat. Res. 2014, 1000, 298–301. [Google Scholar] [CrossRef]
- Urban, J.; Klečka, T. Surface modification of fresh placed concrete and its durability at effect of defrosting substances. Adv. Mat. Res. 2014, 923, 138–141. [Google Scholar] [CrossRef]
- Farnam, Y.; Dick, S.; Wiese, A.; Davis, J.; Bentz, D.; Weiss, J. The influence of calcium chloride deicing salt on phase changes and damage development in cementitious materials. Cem. Concr. Compos. 2015, 64, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kejin, W.; Nelsen, D.E.; Nixon, W.A. Damaging effects of deicing chemicals on concrete materials. Cem. Concr. Compos. 2006, 2, 173–188. [Google Scholar]
- Farnam, Y.; Todak, H.; Spragg, R.; Weiss, J. Electrical response of mortar with different degrees of saturation and deicing salt solutions during freezing and thawing. Cem. Concr. Compos. 2015, 59, 49–59. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, H. Experimental investigation on the ice/snow melting performance of CNFP & MWCNT/cement-based deicing system. In Proceedings of the 6th International Workshop on Advanced Smart Materials and Smart Structures Technology, Dalian, China, 25–26 July 2011.
- Tuan, C.; Yehia, S. Evaluation of electrically conductive concrete containing carbon products for deicing. Am. Concr. Inst. Mater. J. 2004, 101, 287–293. [Google Scholar]
- Chang, C.; Ho, M.; Song, G.; Mo, Y.L.; Li, H. A feasibility study of self-heating concrete utilizing carbon nanofiber heating elements. Smart Mater. Struct. 2009, 18, 1–5. [Google Scholar] [CrossRef]
- Zhao, H.M.; WU, Z.M.; Wang, S.G.; Zheng, J.J.; Che, G.J. Concrete pavement deicing with carbon fiber heating wires. Cold Reg. Sci. Technol. 2011, 65, 413–420. [Google Scholar] [CrossRef]
- European Committee for Standardization UNE-EN 196-1. Methods of Testing Cement. Part 1: Determination of Strength; European Committee for Standardization (CEN): Brussels, Belgium, 2005.
- Baeza, F.J.; Chung, D.D.L.; Zornoza, E.; Andion, L.G.; Garces, P. Triple percolation in concrete reinforced with carbon fiber. ACI Mater. J. 2010, 107, 396–402. [Google Scholar]
- Baeza, F.J.; Galao, O.; Zornoza, E.; Garcés, P. Effect of aspect ratio on strain sensing capacity of carbon fiber reinforced cement composites. Mater. Des. 2013, 51, 1085–1094. [Google Scholar] [CrossRef]
- Yakhlaf, M.; Safiuddin, M.; Soudki, K.A. Properties of freshly mixed carbon fibre reinforced self-consolidating concrete. Constr. Build. Mater. 2013, 46, 224–231. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, J.; Ai, T.; Jiang, W.; Zhao, P. Quantitative evaluation of carbon fiber dispersion in cement based composites. Constr. Build. Mater. 2014, 68, 26–30. [Google Scholar] [CrossRef]
- Park, S.J.; Seo, M.K.; Shim, H.B.; Rhee, K.Y. Effect of different cross-section types on mechanical properties of carbon fibers-reinforced cement composites. Mater. Sci. Eng. A 2004, 55, 366–348. [Google Scholar] [CrossRef]
- Vickers, P.E.; Watts, J.F.; Perruchot, C.; Chehimi, M.M. The surface chemistry and acid-base properties of a PAN-based carbon fibre. Carbon 2000, 38, 675–689. [Google Scholar] [CrossRef]
Property | Value and Unit |
---|---|
Diameter | 7.2 µm |
Length | 1/3 in (8.5 mm) |
Carbon content | 95% |
Tensile strength | 3800 MPa |
Elastic modulus | 242 GPa |
Resistivity | 1.52 × 10−3 Ω·cm |
Density | 1.81 g/cm3 |
Cement | 5400 |
Water | 2700 |
Sand | 4050 |
Gravel | 6075 |
Silica Fume | 540 |
Superplasticizer | 113.4 |
Carbon Fibers | 108 |
Test Type 1 | Current Type and Voltage (V) | Avg. 2 Curr. (A) | % SD (Avg. Curr.) | Time with Current on (h) | Energy Consumption (J) | Avg. Power (W/m2) | Avg. Electrical Resistivity (Ω·cm) | Tenv (Initial) (°C) | Avg. T_Concrete (Initial) (°C) | Avg. T_Concrete (Final) (°C) | ΔT Concrete (°C) | ΔT (Concrete-Env) (°C) | Avg. Powerper °C (W/(m2·°C)) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L.C. | AC 10 | 0.5 | 0.7% | 6.1 | 112,348 | 71.6 | 52.8 | 26.2 | 24.9 | 29.3 | 3.1 3 | 3.1 | 23.3 |
L.C. | DC 10 | 0.5 | 2.1% | 6.1 | 114,159 | 72.6 | 49.7 | 26.2 | 25.1 | 29.3 | 3.1 3 | 3.1 | 23.7 |
L.C. | AC 10 | 1.1 | 0.3% | 5.3 | 425,633 | 307.7 | 49.1 | 26.1 | 26.3 | 37.1 | 10.8 | 11.0 | 27.9 |
L.C. | DC 20 | 1.1 | 0.3% | 5.3 | 436,499 | 315.7 | 45.3 | 26.1 | 26.2 | 38.0 | 11.8 | 11.9 | 26.6 |
L.C. | AC 25 | 1.4 | 0.6% | 4.7 | 599,333 | 489.1 | 48.2 | 25.3 | 25.8 | 42.3 | 16.5 | 17.0 | 28.8 |
L.C. | DC 25 | 1.5 | 1.0% | 4.7 | 620,458 | 506.5 | 44.1 | 25.3 | 25.8 | 44.6 | 18.8 | 19.3 | 26.2 |
Prev. | AC 20 | 1.2 | 0.4% | 3.6 | 313,159 | 338.7 | 44.6 | −15.0 | 4.4 | 4.5 | 0.1 | 19.5 | 17.4 |
Prev. | DC 20 | 1.1 | 0.2% | 3.6 | 286,908 | 310.3 | 46.2 | −15.0 | 2.4 | 2.5 | 0.2 | 17.5 | 17.7 |
Prev. | AC 25 | 1.4 | 0.3% | 4.1 | 513,357 | 479.3 | 49.3 | −15.0 | 4.5 | 7.9 | 3.5 | 22.9 | 20.9 |
Prev. | DC 25 | 1.4 | 0.3% | 4.1 | 503,621 | 470.2 | 47.6 | −15.0 | 6.3 | 9.5 | 3.2 | 24.5 | 19.2 |
Cur. | AC 20 | 1.2 | 0.5% | 8.3 | 711,579 | 329.4 | 45.9 | −15.0 | −13.9 | 4.3 | 18.2 | 19.3 | 17.0 |
Cur. | DC 20 | 1.1 | 0.4% | 8.3 | 645,834 | 298.9 | 48.0 | −15.0 | −13.6 | 2.2 | 15.8 | 17.2 | 17.4 |
Cur. | AC 25 | 1.5 | 0.5% | 4.7 | 641,395 | 526.5 | 44.7 | −15.0 | −14.1 | 11.9 | 26.0 | 26.9 | 19.6 |
Cur. | DC 25 | 1.4 | 0.7% | 4.7 | 595,619 | 489.2 | 45.6 | −15.0 | −13.8 | 9.4 | 23.2 | 24.4 | 20.0 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galao, O.; Bañón, L.; Baeza, F.J.; Carmona, J.; Garcés, P. Highly Conductive Carbon Fiber Reinforced Concrete for Icing Prevention and Curing. Materials 2016, 9, 281. https://doi.org/10.3390/ma9040281
Galao O, Bañón L, Baeza FJ, Carmona J, Garcés P. Highly Conductive Carbon Fiber Reinforced Concrete for Icing Prevention and Curing. Materials. 2016; 9(4):281. https://doi.org/10.3390/ma9040281
Chicago/Turabian StyleGalao, Oscar, Luis Bañón, Francisco Javier Baeza, Jesús Carmona, and Pedro Garcés. 2016. "Highly Conductive Carbon Fiber Reinforced Concrete for Icing Prevention and Curing" Materials 9, no. 4: 281. https://doi.org/10.3390/ma9040281
APA StyleGalao, O., Bañón, L., Baeza, F. J., Carmona, J., & Garcés, P. (2016). Highly Conductive Carbon Fiber Reinforced Concrete for Icing Prevention and Curing. Materials, 9(4), 281. https://doi.org/10.3390/ma9040281