Fatigue Damage Monitoring of a Composite Step Lap Joint Using Distributed Optical Fibre Sensors
Abstract
:1. Introduction
2. Fatigue Test Monitoring
2.1. Distributed Optical Fibre Sensor Technique
2.2. Specimen Design
2.3. Experimental Setup—Fatigue Testing
3. Results and Discussion
3.1. Dynamic Strain Measurement
3.2. Fatigue Monitoring
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mollenhauer, D.; Fredrickson, B.; Schoeppner, G.; Iarve, E.; Palazotto, A. Analysis and measurement of scarf-lap and step-lap joint repair in composite laminates. In Proceedings of the 16th International Conference on Composite Materials, Kyoto, Japan, 2 July 2007.
- Kim, J.; Park, B.; Han, Y. Evaluation of fatigue characteristic for adhesively-bonded composite stepped lap joints. Compos. Struct. 2004, 66, 69–75. [Google Scholar] [CrossRef]
- Viktorov, I. Rayleigh and Lamb Waves: Physical Theory and Applications; Springer: Berlin, Germany, 1967. [Google Scholar]
- Rose, J. Ultrasonic Waves in Solid Media; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Oleksii, K.; Anton, K.; Ermias, K.; Mahmoodul, H.; Lalita, U. Monitoring of Fatigue Damage in Composite Lap-Joints using Guided Waves and FBG Sensors. In Proceedings of the AIP Conference Proceedings, 1706, Minneapolis, MN, USA, 10 February 2016.
- Gandhi, N.; Michaels, J.; Lee, S. Acoustoelastic Lamb Wave Propagation in Biaxially Stressed Plates. J. Acoust. Soc. Am. 2012, 132, 1284–1293. [Google Scholar] [CrossRef] [PubMed]
- Sorin, W.; Baney, D. Measurement of rayleigh backscatter at 1.55 μm with 32 μm spatial resolution. IEEE Photonics Technol. Lett. 1992, 4, 374–376. [Google Scholar] [CrossRef]
- Zou, L.; Ferrier, G.; Afshar, S.; Yu, Q.; Chen, L.; Bao, X. Distributed Brillouin scattering sensor for discrimination of wall-thinning defects in steel pipe under internal pressure. Appl. Opt. 2004, 43, 1583–1588. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Bao, X.; Ravet, F.; Chen, L. Distributed Brillouin fiber sensor for detecting pipeline buckling in an energy pipe under internal pressure. Appl. Opt. 2006, 45, 3372–3377. [Google Scholar] [CrossRef] [PubMed]
- Gifford, D.K.; Kreger, S.T.; Sang, A.K.; Froggatt, M.E.; Duncan, R.G.; Wolfe, M.S.; Soller, B.J. Swept-wavelength Interferometric Interrogation of Fiber Rayleigh Scatter for Distributed Sensing Application. Fiber Opt. Sens. Appl. V 2007, 6770, F1–F9. [Google Scholar]
- Inaudi, B.; Glisic, D. Integration of distributed strain and temperature sensors in composite coiled tubing. Smart Struct. Mater. Int. Soc. Opt. Photonics 2006, 6167, 319–328. [Google Scholar]
- Lim, K.; Wong, L.; Chiu, W.; Kodikara, J. Distributed fiber optic sensors for monitoring pressure and stiffness changes in out-of-round pipes. Struct. Control Health Monit. 2016, 23, 303–314. [Google Scholar] [CrossRef]
- Graham, D.; Guillaume, R.; Raymond, M. The mechanical load transfer into distributed optical fiber sensor due to a linear strain gradient: Embedded and surface bonded cases. Smart Mater. Struct. 1999, 8, 175–181. [Google Scholar]
- Bernasconi, A.; Carboni, M.; Comolli, L.; Galeazzi, R.; Gianneo, A.; Kharshiduzzaman, M. Fatigue crack growth monitoring in composite bonded lap joints by a distributed fibre optic sensing system and comparison with ultrasonic testing. J. Adhes. 2015. [Google Scholar] [CrossRef]
- Eickhoff, W.; Ulrich, R. Optical frequency domain reflectometry in single-mode fiber. Appl. Phys. 1981, 39, 693–695. [Google Scholar] [CrossRef]
- Glombiza, U.; Brinkmeyer, E. Coherent frequency domain reflectometry for characterization of single-mode integrated optical waveguides. J. Lightwave Technol. 1993, 11, 1377–1384. [Google Scholar] [CrossRef]
- Soller, B.J.; Wolfe, M.; Froggatt, M.E. Polarization Resolved Measurement of Rayleigh Backscatter in Fiber-Optic Components; OFC Technical Digest: Los Angeles, CA, USA, 2005. [Google Scholar]
- Rahim, N.A.A.; Thoreson, M.A.; Gorney, T.; Garg, N.; Gifford, D.K.; Froggatt, M.E.; Sang, A.K. Superior Fatigue Characteristics of Fiber Optic Strain Sensors; LunaInc Engineering Note: Roanoke, VA, USA, 2013. [Google Scholar]
- HEXCEL. HexPly M18/1 180 Degree Celcius Curing Epoxy Matrix Product Data; HEXCEL: Stamford, CT, USA, 2011. [Google Scholar]
- FM 300-2 Film Adhesive Technical Data Sheet. 2011. Available online: https://www.cytec.com/sites/default/files/datasheets/FM_300-2_092711.pdf (accessed on 23 February 2016).
- Chowdhury, N.; Chiu, W.; Wang, J.; Chang, P. Static and fatigue testing thin riveted, bonded & hybrid carbon fiber double lap joints used in aircraft structures. Compos. Struct. 2015, 121, 315–323. [Google Scholar]
- Alfredo, G.; Julian, S.; Frank, G.; Toni, K.; Pavlos, M.; Dimitrios, H.; Moshe, T.; Nahum, G.; Christos, K.; Nikolaos, K. Methodologies for the Damage Detection Based on Fibre-Optic Sensors. Applications to the Fuselage Panel and Lower Wing Panel. In Smart Intelligent Aircraft Structures (SARISTU); Springer International Publishing: Berlin, Germany, 2016; pp. 407–431. [Google Scholar]
- Stancalie, A.; Gelu, I. Experimental Characterization of the Optical Fibre Sensors. UPB Sci. Bull. Ser. A 2016, 78, 299–308. [Google Scholar]
Material | E11 (GPa) | E22 (GPa) | G12 (MPa) | G13 (MPa) | ν12 | Tensile Strength | Compressive Strength | |||
---|---|---|---|---|---|---|---|---|---|---|
σ11 (MPa) | σ22 (MPa) | σ12 (MPa) | σ11 (MPa) | σ22 (MPa) | ||||||
M18/G939 | 65 | 67 | 4.0 | 4.0 | 0.04 | 800 | 800 | 100 | 800 | 800 |
Adhesive Material | E (MPa) | G (MPa) | ν | Xt (MPa) | σ12 (MPa) | γe | γp | GIC (kJ/m2) | GIIC (kJ/m2) |
---|---|---|---|---|---|---|---|---|---|
FM300-2K | 2400 | 840 | 0.4 | 94.2 | 54.4 | 0.055 | 0.580 | 1.3 | 5 |
Cycles (N) | Strain (µε) | R-Ratio | Upper Limit (kN) | Lower Limit (kN) |
---|---|---|---|---|
100,000 | 1000 | 0.1 | 6.30 | 0.63 |
200,000 | 2000 | 0.1 | 12.60 | 1.26 |
300,000 | 3000 | 0.1 | 18.90 | 1.89 |
400,000 | 4000 | 0.1 | 25.20 | 2.52 |
500,000 | 4500 | 0.1 | 28.35 | 2.84 |
600,000 | 5000 | 0.1 | 31.50 | 3.15 |
700,000 | 5500 | 0.1 | 34.65 | 3.47 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, L.; Chowdhury, N.; Wang, J.; Chiu, W.K.; Kodikara, J. Fatigue Damage Monitoring of a Composite Step Lap Joint Using Distributed Optical Fibre Sensors. Materials 2016, 9, 374. https://doi.org/10.3390/ma9050374
Wong L, Chowdhury N, Wang J, Chiu WK, Kodikara J. Fatigue Damage Monitoring of a Composite Step Lap Joint Using Distributed Optical Fibre Sensors. Materials. 2016; 9(5):374. https://doi.org/10.3390/ma9050374
Chicago/Turabian StyleWong, Leslie, Nabil Chowdhury, John Wang, Wing Kong Chiu, and Jayantha Kodikara. 2016. "Fatigue Damage Monitoring of a Composite Step Lap Joint Using Distributed Optical Fibre Sensors" Materials 9, no. 5: 374. https://doi.org/10.3390/ma9050374
APA StyleWong, L., Chowdhury, N., Wang, J., Chiu, W. K., & Kodikara, J. (2016). Fatigue Damage Monitoring of a Composite Step Lap Joint Using Distributed Optical Fibre Sensors. Materials, 9(5), 374. https://doi.org/10.3390/ma9050374