Advances and Applications of Ion Torrent Personal Genome Machine in Cutaneous Squamous Cell Carcinoma Reveal Novel Gene Mutations
Abstract
:1. Introduction
2. Results
2.1. Demographic Data
2.2. Target Variants of High-Risk cSCC Using Ion Torrent Personal Genome Machine
2.3. Mutation Prevalence in cSCC According to Tumor Risk
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Genomic DNA Purification and Quantification
4.3. Ion Torrent Personal Genome Machine
4.4. Sequencing
4.5. Statistical Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Navarrete-Dechent, C.; Veness, M.J.; Droppelmann, N.; Uribe, P. High-risk cutaneous squamous cell carcinoma and the emerging role of sentinel lymph node biopsy: A literature review. J. Am. Acad. Dermatol. 2015, 73, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Kallini, J.R.; Hamed, N.; Khachemoune, A. Squamous cell carcinoma of the skin: Epidemiology, classification, management, and novel trends. Int. J. Dermatol. 2015, 54, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Azzimonti, B.; Zavattaro, E.; Provasi, M.; Vidali, M.; Conca, A.; Catalano, E.; Rimondini, L.; Colombo, E.; Valente, G. Intense Foxp3+ CD25+ regulatory T-cell infiltration is associated with high-grade cutaneous squamous cell carcinoma and counterbalanced by CD8+/Foxp3+ CD25+ ratio. Br. J. Dermatol. 2015, 172, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Stratigos, A.; Garbe, C.; Lebbe, C.; Malvehy, J.; del Marmol, V.; Pehamberger, H.; Peris, K.; Becker, J.C.; Zalaudek, I.; Saiag, P.; et al. Diagnosis and treatment of invasive squamous cell carcinoma of the skin: European consensus-based interdisciplinary guideline. Eur. J. Cancer 2015, 51, 1989–2007. [Google Scholar] [CrossRef] [PubMed]
- Brougham, N.D.; Tan, S.T. The incidence and risk factors of metastasis for cutaneous squamous cell carcinoma—Implications on the T-classification system. J. Surg. Oncol. 2014, 110, 876–882. [Google Scholar] [CrossRef]
- Martorell-Calatayud, A.; Sanmartin Jimenez, O.; Cruz Mojarrieta, J.; Guillen Barona, C. Cutaneous squamous cell carcinoma: Defining the high-risk variant. Actas Dermo-Sifiliogr. 2013, 104, 367–379. [Google Scholar] [CrossRef]
- Schmults, C.D.; Karia, P.S.; Carter, J.B.; Han, J.; Qureshi, A.A. Factors predictive of recurrence and death from cutaneous squamous cell carcinoma: A 10-year, single-institution cohort study. JAMA Dermatol. 2013, 149, 541–547. [Google Scholar] [CrossRef]
- Nolan, R.C.; Chan, M.T.; Heenan, P.J. A clinicopathologic review of lethal nonmelanoma skin cancers in Western Australia. J. Am. Acad. Dermatol. 2005, 52, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Schwaederle, M.; Elkin, S.K.; Tomson, B.N.; Carter, J.L.; Kurzrock, R. Squamousness: Next-generation sequencing reveals shared molecular features across squamous tumor types. Cell Cycle 2015, 14, 2355–2361. [Google Scholar] [CrossRef] [PubMed]
- Hertzler-Schaefer, K.; Mathew, G.; Somani, A.K.; Tholpady, S.; Kadakia, M.P.; Chen, Y.; Spandau, D.F.; Zhang, X. Pten loss induces autocrine FGF signaling to promote skin tumorigenesis. Cell Rep. 2014, 6, 818–826. [Google Scholar] [CrossRef]
- Ratushny, V.; Gober, M.D.; Hick, R.; Ridky, T.W.; Seykora, J.T. From keratinocyte to cancer: The pathogenesis and modeling of cutaneous squamous cell carcinoma. J. Clin. Investig. 2012, 122, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Zalaudek, I.; Giacomel, J.; Schmid, K.; Bondino, S.; Rosendahl, C.; Cavicchini, S.; Tourlaki, A.; Gasparini, S.; Bourne, P.; Keir, J.; et al. Dermatoscopy of facial actinic keratosis, intraepidermal carcinoma, and invasive squamous cell carcinoma: A progression model. J. Am. Acad. Dermatol. 2012, 66, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.B.; Cho, R.J. Genetics and epigenetics of the skin meet deep sequence. J. Investig. Dermatol. 2012, 132, 923–932. [Google Scholar] [CrossRef] [PubMed]
- Futreal, P.A.; Coin, L.; Marshall, M.; Down, T.; Hubbard, T.; Wooster, R.; Rahman, N.; Stratton, M.R. A census of human cancer genes. Nat. Rev. Cancer 2004, 4, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Shendure, J.; Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 2008, 26, 1135–1145. [Google Scholar] [CrossRef] [PubMed]
- Merriman, B.; Ion Torrent, R.; Team, D.; Rothberg, J.M. Progress in ion torrent semiconductor chip based sequencing. Electrophoresis 2012, 33, 3397–3417. [Google Scholar] [CrossRef] [PubMed]
- Katsnelson, A. DNA Sequencing for the Masses. Available online: http://www.nature.com/news/2010/101214/full/news. 2010.674.html (accessed on 3 January 2016).
- Liu, L.; Li, Y.; Li, S.; Hu, N.; He, Y.; Pong, R.; Lin, D.; Lu, L.; Law, M. Comparison of next-generation sequencing systems. J. Biomed. Biotechnol. 2012, 2012, 251364. [Google Scholar] [CrossRef] [PubMed]
- Ansorge, W.J. Next-generation DNA sequencing techniques. New Biotechnol. 2009, 25, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.S.; Rai, K.; Garber, M.; Hollinger, A.; Robbins, D.; Anderson, S.; Macbeth, A.; Tzou, A.; Carneiro, M.O.; Raychowdhury, R.; et al. Semiconductor-based DNA sequencing of histone modification states. Nat. Commun. 2013, 4, 2672. [Google Scholar] [CrossRef] [PubMed]
- Maruthappu, T.; Scott, C.A.; Kelsell, D.P. Discovery in genetic skin disease: The impact of high throughput genetic technologies. Genes 2014, 5, 615–634. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.T.; Mosier, S.L.; Thiess, M.; Beierl, K.F.; Debeljak, M.; Tseng, L.H.; Chen, G.; Yegnasubramanian, S.; Ho, H.; Cope, L.; et al. Clinical validation of KRAS, BRAF, and EGFR mutation detection using next-generation sequencing. Am. J. Clin. Pathol. 2014, 141, 856–866. [Google Scholar] [CrossRef] [PubMed]
- Rovigatti, U. Cancer modelling in the NGS era—Part I: Emerging technology and initial modelling. Crit. Rev. Oncol. Hematol. 2015, 96, 274–307. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wen, Z.; Shen, J.; Cheng, W.; Li, J.; Qin, X.; Ma, D.; Shi, Y. Comparison of the performance of ion torrent chips in noninvasive prenatal trisomy detection. J. Hum. Genet. 2014, 59, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Paniz Mondolfi, A.E.; Jour, G.; Johnson, M.; Reidy, J.; Cason, R.C.; Barkoh, B.A.; Benaim, G.; Singh, R.; Luthra, R. Primary cutaneous carcinosarcoma: Insights into its clonal origin and mutational pattern expression analysis through next-generation sequencing. Hum. Pathol. 2013, 44, 2853–2860. [Google Scholar] [CrossRef] [PubMed]
- Martincorena, I.; Roshan, A.; Gerstung, M.; Ellis, P.; Van Loo, P.; McLaren, S.; Wedge, D.C.; Fullam, A.; Alexandrov, L.B.; Tubio, J.M.; et al. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 2015, 348, 880–886. [Google Scholar] [CrossRef] [PubMed]
- South, A.P.; Li, Q.; Uitto, J. Next-generation sequencing for mutation detection in heritable skin diseases: The paradigm of pseudoxanthoma elasticum. J. Investig. Dermatol. 2015, 135, 937–940. [Google Scholar] [CrossRef] [PubMed]
- Stratton, M.R. Exploring the genomes of cancer cells: Progress and promise. Science 2011, 331, 1553–1558. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.-W.; Tsao, S.; Lee, J.Y.-Y. In situ photoimmunotherapy is ineffective in treating deeply invasive squamous cell carcinoma. Dermatol. Sin. 2014, 32, 90–92. [Google Scholar] [CrossRef]
- Alter, M.; Satzger, I.; Mattern, A.; Kapp, A.; Gutzmer, R. Treatment of advanced cutaneous squamous cell carcinomas with epidermal growth factor receptor inhibitors. Dermatology 2013, 227, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, A.R.; Brewer, J.D.; Bordeaux, J.S.; Baum, C.L. Staging for cutaneous squamous cell carcinoma as a predictor of sentinel lymph node biopsy results: Meta-analysis of american joint committee on cancer criteria and a proposed alternative system. JAMA Dermatol. 2014, 150, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Al-Rohil, R.N.; Tarasen, A.J.; Carlson, J.A.; Wang, K.; Johnson, A.; Yelensky, R.; Lipson, D.; Elvin, J.A.; Vergilio, J.A.; Ali, S.M.; et al. Evaluation of 122 advanced-stage cutaneous squamous cell carcinomas by comprehensive genomic profiling opens the door for new routes to targeted therapies. Cancer 2016, 122, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Mavropoulos, J.; Aldabagh, B.; Arron, S. Prospects for personalized targeted therapies for cutaneous squamous cell carcinoma. Semin. Cutan. Med. Surg. 2014, 33, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Mockus, S.M.; Potter, C.S.; Stafford, G.A.; Ananda, G.; Hinerfeld, D.; Tsongalis, G.I. Targeting KDR mutations in lung adenocarcinoma. In Proceedings of the 106th Annual Meeting of the American Association for Cancer Research, Philadelphia, PA, USA, 18–22 April 2015.
- Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 2003, 9, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Glubb, D.M.; Cerri, E.; Giese, A.; Zhang, W.; Mirza, O.; Thompson, E.E.; Chen, P.; Das, S.; Jassem, J.; Rzyman, W.; et al. Novel functional germline variants in the vascular endothelial growth factor receptor 2 gene and their effect on gene expression and microvessel density in lung cancer. Clin. Cancer Res. 2011, 17, 5257–5267. [Google Scholar] [CrossRef] [PubMed]
- Salgado, C.M.; Basu, D.; Nikiforova, M.; Hamilton, R.L.; Gehris, R.; Jakacki, R.; Panigrahy, A.; Yatsenko, S.; Reyes-Múgica, M. Amplification of mutated NRAS leading to congenital melanoma in neurocutaneous melanocytosis. Melanoma Res. 2015, 25, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Claudio Luchini, C.; Capelli, P.; Fassan, M.; Simbolo, M.; Mafficini, A.; Pedica, F.; Ruzzenente, A.; Guglielmi, A.; Corbo, V.; Scarpa, A. Next-Generation Histopathologic Diagnosis: A Lesson From a Hepatic Carcinosarcoma. J. Clin. Oncol. 2014, 32, e63–e66. [Google Scholar] [CrossRef] [PubMed]
Characteristics | No. of Patients | Percentage | Characteristics | No. of Patients | Percentage |
---|---|---|---|---|---|
Age | - | - | Differentiation | - | - |
<65 | 16 | 23.9 | Poor | 19 | 28.4 |
≧65 | 51 | 76.1 | Moderate | 39 | 58.2 |
Sex | - | - | Well | 9 | 13.4 |
Male | 38 | 56.7 | Recurrence | - | - |
Female | 29 | 43.3 | No | 60 | 89.6 |
Location | - | - | Yes | 7 | 10.4 |
Face | 28 | 41.8 | Metastasis | - | - |
Ear and lip | 14 | 20.9 | No | 64 | 95.5 |
Others | 25 | 37.3 | Yes | 3 | 4.5 |
Tumor size | - | - | Risk | - | - |
≤2 cm | 49 | 73.1 | Low | 30 | 44.8 |
>2 cm | 18 | 26.9 | High | 37 | 55.2 |
Clark level | - | - | - | - | - |
<IV | 61 | 91.0 | - | - | - |
≧IV | 6 | 9.0 | - | - | - |
Chrom | Position | Gene Sym | Ploidy | Ref | Variant | VarFreq | Coverage | Ref Cov | Var Cov | AA Mut |
---|---|---|---|---|---|---|---|---|---|---|
chr4 | 1807894 | FGFR3 | Hom | G | A | 99.64 | 1652 | 6 | 1646 | - |
chr4 | 55141055 | PDGFRA | Hom | A | G | 99.92 | 4967 | 1 | 4963 | - |
chr4 | 55972974 | KDR | Hom | T | A | 99.87 | 3051 | 3 | 3047 | p.Q427H |
chr5 | 112175770 | APC | Hom | G | A | 99.73 | 1472 | 4 | 1468 | - |
chr7 | 55249063 | EGFR | Het | G | A | 44.12 | 102 | 57 | 45 | - |
chr7 | 55249110 | EGFR | Het | G | A | 8.33 | 2160 | 1980 | 180 | p.R803Q |
chr7 | 116339672 | MET | Het | C | T | 53.44 | 1106 | 514 | 591 | - |
chr7 | 116340262 | MET | Het | A | G | 51.56 | 3305 | 1598 | 1704 | p.N375S |
chr10 | 43613843 | RET | Het | G | T | 51.06 | 47 | 23 | 24 | - |
chr10 | 123274818 | FGFR2 | Het | T | A | 5.37 | 3797 | 3582 | 204 | p.K367M |
chr10 | 123274819 | FGFR2 | Het | T | C | 10.88 | 3905 | 3479 | 425 | p.K367E |
chr11 | 108236046 | ATM | Het | C | G | 5.45 | 716 | 676 | 39 | - |
chr12 | 121432011 | HNF1A | Het | G | C | 4.38 | 3450 | 3292 | 151 | p.G253A |
chr14 | 105246407 | AKT1 | Het | G | A | 43.66 | 6439 | 3627 | 2811 | - |
Chrom | Position | Gene Sym | Ploidy | Ref | Variant | Var Freq | Coverage | Ref Cov | Var Cov | AA Mut |
---|---|---|---|---|---|---|---|---|---|---|
chr3 | 178952190 | PIK3CA | Het | C | A | 7.42 | 1307 | 1209 | 97 | - |
chr4 | 1807894 | FGFR3 | Hom | G | A | 99.67 | 1534 | 1 | 1529 | - |
chr4 | 55141055 | PDGFRA | Hom | A | G | 99.91 | 5433 | 4 | 5428 | - |
chr4 | 55152040 | PDGFRA | Het | C | T | 61.32 | 6981 | 2699 | 4281 | - |
chr4 | 55972974 | KDR | Het | T | A | 52.74 | 2300 | 1085 | 1213 | p.Q427H |
chr5 | 112175770 | APC | Hom | G | A | 99.24 | 1964 | 14 | 1949 | - |
chr7 | 55249110 | EGFR | Het | G | A | 6.79 | 3227 | 3004 | 219 | p.R803Q |
chr9 | 21971179 | CDKN2A | Het | G | A | 58.12 | 1194 | 499 | 694 | p.A60V |
chr10 | 43613843 | RET | Het | G | T | 43.9 | 41 | 23 | 18 | - |
chr10 | 123274818 | FGFR2 | Het | T | A | 5.94 | 4445 | 4169 | 264 | p.K367M |
chr10 | 123274819 | FGFR2 | Het | T | C | 11.02 | 4536 | 4027 | 500 | p.K367E |
chr11 | 108236046 | ATM | Het | C | G | 5.01 | 659 | 624 | 33 | - |
chr12 | 121432011 | HNF1A | Het | G | C | 4.52 | 2743 | 2612 | 124 | p.G253A |
chr13 | 48942722 | RB1 | Het | C | T | 8.91 | 404 | 368 | 36 | p.P370L |
Characteristics | No. of Patients | KDR | FGFR2 | EGFR | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Positive | Negative | Positive | Negative | Positive | Negative | |||||
Total | n | n | p-value | n | n | p-value | n | n | p-value | |
Age | 0.200 | 0.032 * | 0.174 | |||||||
<65 | 16 | 12 | 4 | 3 | 13 | 3 | 13 | |||
≧65 | 51 | 29 | 22 | 25 | 26 | 19 | 32 | |||
Sex | 0.385 | 0.154 | 0.806 | |||||||
Male | 38 | 25 | 13 | 13 | 25 | 12 | 26 | |||
Female | 29 | 16 | 13 | 15 | 14 | 10 | 19 | |||
Location | 0.721 | 0.080 | 0.241 | |||||||
Sunexposure | 42 | 25 | 17 | 21 | 21 | 16 | 26 | |||
Non-sunarea | 25 | 16 | 9 | 7 | 18 | 6 | 19 | |||
Differentiation | 0.963 | 0.751 | 0.268 | |||||||
Poor | 19 | 12 | 7 | 11 | 8 | 8 | 11 | |||
Moderate | 39 | 23 | 16 | 11 | 28 | 12 | 27 | |||
Well | 9 | 6 | 3 | 6 | 3 | 2 | 7 | |||
Recurrence | 0.820 | 0.096 | 0.001 * | |||||||
No | 60 | 37 | 23 | 23 | 37 | 16 | 44 | |||
Yes | 7 | 4 | 3 | 5 | 2 | 6 | 1 | |||
Metastasis | 0.845 | 0.379 | 0.985 | |||||||
No | 64 | 39 | 25 | 26 | 38 | 21 | 43 | |||
Yes | 3 | 2 | 1 | 2 | 1 | 1 | 2 | |||
Risk | 0.028 * | 0.001 * | <0.001* | |||||||
Low | 30 | 14 | 16 | 6 | 24 | 1 | 29 | |||
High | 37 | 27 | 10 | 22 | 15 | 21 | 16 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsiao, Y.-P.; Lu, C.-T.; Chang-Chien, J.; Chao, W.-R.; Yang, J.-J. Advances and Applications of Ion Torrent Personal Genome Machine in Cutaneous Squamous Cell Carcinoma Reveal Novel Gene Mutations. Materials 2016, 9, 464. https://doi.org/10.3390/ma9060464
Hsiao Y-P, Lu C-T, Chang-Chien J, Chao W-R, Yang J-J. Advances and Applications of Ion Torrent Personal Genome Machine in Cutaneous Squamous Cell Carcinoma Reveal Novel Gene Mutations. Materials. 2016; 9(6):464. https://doi.org/10.3390/ma9060464
Chicago/Turabian StyleHsiao, Yu-Ping, Chun-Te Lu, Ju Chang-Chien, Wan-Ru Chao, and Jiann-Jou Yang. 2016. "Advances and Applications of Ion Torrent Personal Genome Machine in Cutaneous Squamous Cell Carcinoma Reveal Novel Gene Mutations" Materials 9, no. 6: 464. https://doi.org/10.3390/ma9060464
APA StyleHsiao, Y. -P., Lu, C. -T., Chang-Chien, J., Chao, W. -R., & Yang, J. -J. (2016). Advances and Applications of Ion Torrent Personal Genome Machine in Cutaneous Squamous Cell Carcinoma Reveal Novel Gene Mutations. Materials, 9(6), 464. https://doi.org/10.3390/ma9060464