Benefits of Sealed-Curing on Compressive Strength of Fly Ash-Based Geopolymers
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. Characteristics of Fly Ash
3.2. Impact of Unsealed Curing on Physical Properties of Geopolymers
3.3. Role of Water during Sealed Aging in Geopolymerization
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kani, E.N.; Allahverdi, A.; Provis, J.L. Efflorescence control in geopolymer binders based on natural pozzolan. Cem. Concr. Compos. 2012, 34, 25–33. [Google Scholar] [CrossRef]
- Moon, J.; Bae, S.; Celik, K.; Yoon, S.; Kim, K.-H.; Kim, K.-S.; Monteiro, P.J.M. Characterization of natural pozzolan-based geopolymeric binders. Cem. Concr. Compos. 2014, 53, 97–104. [Google Scholar] [CrossRef]
- Chen-Tan, N.W.; van Riessen, A.; Ly, C.V.; Southam, D.C. Determining the reactivity of a fly ash for production of geopolymer. J. Am. Ceram. Soc. 2009, 92, 881–887. [Google Scholar] [CrossRef]
- Williams, R.P.; van Riessen, A. Determination of the reactive component of fly ashes for geopolymer production using XRF and XRD. Fuel 2010, 89, 3683–3692. [Google Scholar] [CrossRef]
- Williams, R.P.; Hart, R.D.; van Riessen, A. Quantification of the extent of reaction of metakaolin-based geopolymers using X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. J. Am. Ceram. Soc. 2011, 94, 2663–2670. [Google Scholar] [CrossRef]
- Helmy, A.I.I. Intermittent curing of fly ash geopolymer mortar. Constr. Build. Mater. 2016, 110, 54–64. [Google Scholar] [CrossRef]
- Wallah, S.E.; Rangan, B.V. Low-Calcium Fly Ash-Based Geopolymer Concrete: Long-Term Properties; Technical Report No. GC2; Curtin University of Technology: Perth, Australia, 2006; pp. 37–38. [Google Scholar]
- Duxson, P.; Fernandez-Jimenez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S.J. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Rangan, B.V. Engineering properties of geopolymer concrete. In Geopolymers Structure, Processing, Properties and Industrial Applications; Provis, J.L., Deventer, J.S.J., Eds.; CRC Press: Boca Raton, FL, USA, 2009; pp. 211–226. [Google Scholar]
- Lizcano, M.; Gonzalez, A.; Basu, S.; Lozano, K.; Radovic, M. Effects of water content and chemical composition on structural properties of alkaline activated metakaolin-based geopolymers. J. Am. Ceram. Soc. 2012, 95, 2169–2177. [Google Scholar] [CrossRef]
- Steins, P.; Poulesquen, A.; Diat, O.; Frizon, F. Structural evolution during geopolymerization from an early age to consolidated material. Langmuir 2012, 28, 8502–8510. [Google Scholar] [CrossRef] [PubMed]
- Perera, D.S.; Vance, E.R.; Finnie, K.S.; Blackford, M.G.; Hanna, J.V.; Cassidy, D.J.; Nicholoson, C.L. Disposition of water in metakaolinite-based gepolymers. Ceram. Trans. 2005, 185, 225–236. [Google Scholar]
- Criado, M.; Palomo, A.; Fernández-Jiménez, A. Alkali activation of fly ash. Part I: Effect of curing conditions on carbonation on the reaction products. Fuel 2005, 84, 2048–2054. [Google Scholar] [CrossRef]
- Criado, M.; Fernández-Jiménez, A.; Palomo, A. Alkali activation of fly ash. Part III: Effect of curing conditions on reaction and its graphical description. Fuel 2010, 89, 3185–3192. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymer chemistry and sustainable development. The poly (sialate) terminology: A very useful and simple model for the promotion and understanding of green-chemistry. In Geopolymers, Green Chemistry and Sustainable Development Solutions; Davidovits, J., Ed.; Geopolymer Institute: Saint-Quentin, France, 2005; pp. 9–15. [Google Scholar]
- Palomo, A.; Alonso, S.; Fernández-Jiménez, A.; Sobrados, I.; Sanz, J. Alkaline activation of fly ashes: NMR study of the reaction products. J. Am. Ceram. Soc. 2004, 87, 1141–1145. [Google Scholar] [CrossRef]
- Wang, K.; Shah, S.P.; Mishulovich, A. Effects of curing temperature and NaOH addition on hydration and strength development of clinker-free CKD-fly ash binders. Cem. Concr. Res. 2004, 34, 299–309. [Google Scholar] [CrossRef]
- Khale, D.; Chaudhary, R. Mechanism of geopolymerization and factors influencing its development: A review. J. Mater. Sci. 2007, 42, 729–746. [Google Scholar] [CrossRef]
- Adam, A.A. Strength and Durability Properties of Alkali Activated Slag and Fly Ash-Based Geopolymer Concrete. Ph.D. Thesis, RMIT University, Melbourne, Australia, 2009. [Google Scholar]
- Lee, S.; Seo, M.-D.; Kim, Y.-J.; Park, H.-Y.; Kim, T.-N.; Hwang, Y.; Cho, S.-B. Unburned carbon removal effect on compressive strength development in a honeycomb briquette ash-based geopolymer. Int. J. Miner. Process. 2010, 97, 20–25. [Google Scholar] [CrossRef]
- Rovnaník, P. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr. Build. Mater. 2010, 24, 1176–1183. [Google Scholar]
- Valcke, S.L.A.; Polder, R.B.; van Henegouwen, H.J.F.B. Understanding Transport Properties of Geopolymer Mortar Using Polarization and Fluorescence Microscopy; International Congress on Durability of Concrete: Trondheim, Norway, 2012; pp. A3–A4. [Google Scholar]
- Jambor, J. Influence of phase composition of hardened binder pastes on its pore structure and porosity. In Pore Structure and Properties of Materials; Modrý, S., Ed.; Academia: Prague, Czech Republic, 1973; pp. D75–D95. [Google Scholar]
- Popovics, S. Strength and Related Properties of Concrete: A Quantitative Approach, 1st ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1998; pp. 301–390. [Google Scholar]
- Pellenq, R.J.-M.; van Damme, H. Why does concrete set? The nature of cohesion forces in hardened cement-based materials. MRS Bull. 2004, 29, 319–323. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymer Chemistry and Applications, 3rd ed.; Geopolymer Institute: Saint-Quentin, France, 2011; pp. 21–38. [Google Scholar]
- Zuhua, Z.; Xiao, Y.; Huajun, Z.; Yue, C. Role of water in the synthesis of calcined kaolin-based geopolymer. Appl. Clay Sci. 2009, 43, 218–223. [Google Scholar] [CrossRef]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; Separovic, F.; Deventer, J.S.J. 29Si NMR study of structural ordering in aluminosilicate geopolymer gels. Langmuir 2005, 21, 3028–3036. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.S.; Bastow, T.; Trigg, M. Structural studies of geopolymers by 29Si and 27Al MAS-NMR. J. Mater. Sci. 2005, 40, 3951–3961. [Google Scholar] [CrossRef]
- Brew, D.R.M.; MacKenzie, K.J.D. Geopolymer synthesis using silica fume and sodium aluminate. J. Mater. Sci. 2007, 42, 3990–3993. [Google Scholar] [CrossRef]
Specimen | Strength Measurement Time |
---|---|
A1 | After 1 d * curing at 70 °C |
A7 | 1 d curing at 70 °C + 6 d aging sealed at ambient temperature |
AD 1 | 1 d curing at 70 °C + 9 d aging sealed at ambient temperature |
A14 | 1 d curing at 70 °C + 13 d aging sealed at ambient temperature |
A28 | 1 d curing at 70 °C + 27 d aging sealed at ambient temperature |
B7 | 1 d curing at 70 °C + 6 d aging unsealed at ambient temperature |
BD 1 | 1 d curing at 70 °C + 9 d aging unsealed at ambient temperature |
B14 | 1 d curing at 70 °C + 13 d aging unsealed at ambient temperature |
B28 | 1 d curing at 70 °C + 27 d aging unsealed at ambient temperature |
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | Na2O | TiO2 | MnO | P2O5 | LOI |
---|---|---|---|---|---|---|---|---|---|---|
53.49 | 21.54 | 8.15 | 5.77 | 2.02 | 1.30 | 0.90 | 1.17 | 0.09 | 1.00 | 4.13 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Van Riessen, A.; Chon, C.-M. Benefits of Sealed-Curing on Compressive Strength of Fly Ash-Based Geopolymers. Materials 2016, 9, 598. https://doi.org/10.3390/ma9070598
Lee S, Van Riessen A, Chon C-M. Benefits of Sealed-Curing on Compressive Strength of Fly Ash-Based Geopolymers. Materials. 2016; 9(7):598. https://doi.org/10.3390/ma9070598
Chicago/Turabian StyleLee, Sujeong, Arie Van Riessen, and Chul-Min Chon. 2016. "Benefits of Sealed-Curing on Compressive Strength of Fly Ash-Based Geopolymers" Materials 9, no. 7: 598. https://doi.org/10.3390/ma9070598
APA StyleLee, S., Van Riessen, A., & Chon, C. -M. (2016). Benefits of Sealed-Curing on Compressive Strength of Fly Ash-Based Geopolymers. Materials, 9(7), 598. https://doi.org/10.3390/ma9070598