Modified Migrating Birds Optimization for Energy-Aware Flexible Job Shop Scheduling Problem
Abstract
:1. Introduction
2. Mathematical Model of EDRCFJSP
2.1. Problem Description
- (1)
- Jobs, machines and workers are ready at the time zero;
- (2)
- Each machine can process, at most, one operation at a time;
- (3)
- Each worker can operate, at most, one machine at a time;
- (4)
- For each operation, preemption is not permitted;
- (5)
- Any two operations belonging to different jobs are independent of each other;
- (6)
- A worker cannot be changed when he/she is processing jobs;
- (7)
- Each machine cannot be completely turned off unless all jobs assigned to it are finished;
- (8)
- The transportation times of jobs and moving times of the workers between different machines are ignored.
2.2. Energy Consumption Model
2.2.1. Processing Energy Consumption
2.2.2. Idle Energy Consumption
2.2.3. Setup Energy Consumption
2.2.4. Common Energy Consumption
2.2.5. Total Energy Consumption
2.3. Problem Modelling
3. Modified Migrating Birds Optimization
3.1. The Basic MBO Algorithm
3.2. Solution Encoding
3.3. Population Initialization
3.4. Neighborhood Structure
3.5. Aging-Based Re-Initialization Mechanism
3.6. Local Search Strategy
3.7. Procedure of the Proposed Algorithm
4. Computational Results and Discussion
4.1. Effectiveness of the Improvement Strategy
4.2. Effectiveness of the Proposed MMBO
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jiang, T.; Zhang, C.; Zhu, H.; Deng, G. Energy-efficient scheduling for a job shop using grey wolf optimization algorithm with double-searching mode. Math. Probl. Eng. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Zhang, C.; Sun, Q.M. Green job shop scheduling problem with discrete whale optimization algorithm. IEEE Access 2019, 7, 43153–43166. [Google Scholar]
- Lu, Y.; Jiang, T. Bi-population based discrete bat algorithm for the low-carbon job shop scheduling problem. IEEE Access 2019, 7, 14513–14522. [Google Scholar]
- Jiang, T.; Zhang, C. Application of grey wolf optimization for solving combinatorial problems: Job shop and flexible job shop scheduling cases. IEEE Access 2018, 6, 26231–26240. [Google Scholar]
- Jiang, T.; Zhang, C. Adaptive discrete cat swarm optimisation algorithm for the flexible job shop problem. Int. J. Bio-Inspired Comput. 2019, 13, 199–208. [Google Scholar]
- Mokhtari, H.; Hasani, A. An energy-efficient multi-objective optimization for flexible job-shop scheduling problem. Comput. Chem. Eng. 2017, 104, 339–352. [Google Scholar]
- Lei, D.; Zheng, Y.; Guo, X. A shuffled frog-leaping algorithm for flexible job shop scheduling with the consideration of energy consumption. Int. J. Prod. Res. 2017, 55, 3126–3140. [Google Scholar]
- Wu, X.; Sun, Y. A green scheduling algorithm for flexible job shop with energy-saving measures. J. Clean. Prod. 2018, 172, 3249–3264. [Google Scholar]
- Wang, H.; Jiang, Z.; Wang, Y.; Zhang, H.; Wang, Y.-H. A two-stage optimization method for energy-saving flexible job-shop scheduling based on energy dynamic characterization. J. Clean. Prod. 2018, 188, 575–588. [Google Scholar]
- Lei, D.; Li, M.; Wang, L. A two-phase meta-heuristic for multiobjective flexible job shop scheduling problem with total energy consumption threshold. IEEE Trans. Cybern. 2018, 49, 1097–1109. [Google Scholar]
- Meng, L.; Zhang, C.; Shao, X.; Ren, Y. MILP models for energy-aware flexible job shop scheduling problem. J. Clean. Prod. 2019, 210, 710–723. [Google Scholar]
- Jiang, T.; Deng, G. Optimizing the low-carbon flexible job shop scheduling problem considering energy consumption. IEEE Access 2018, 6, 46346–46355. [Google Scholar]
- Yin, L.; Li, X.; Gao, L.; Lu, C.; Zhang, Z. A novel mathematical model and multi-objective method for the low-carbon flexible job shop scheduling problem. Sustain. Comput. 2017, 13, 15–30. [Google Scholar]
- Song, W.J.; Zhang, C.Y.; Lin, W.W.; Shao, X.Y. Flexible job-shop scheduling problem with maintenance activities considering energy consumption. Appl. Mech. Mater. 2014, 521, 707–713. [Google Scholar]
- Liu, Z.; Guo, S.; Wang, L. Integrated green scheduling optimization of flexible job shop and crane transportation considering comprehensive energy consumption. J. Clean. Prod. 2019, 211, 765–786. [Google Scholar]
- Zhang, H.; Dai, Z.; Zhang, W.; Zhang, S.; Wang, Y.; Liu, R. A new Energy-Aware flexible job shop scheduling method using modified Biogeography-Based optimization. Math. Probl. Eng. 2017, 2017, 7249876. [Google Scholar]
- Zhang, X.; Ji, Z.; Wang, Y. An improved SFLA for flexible job shop scheduling problem considering energy consumption. Mod. Phys. Lett. B 2018, 32, 1840112. [Google Scholar]
- Lu, Y.; Lu, J.; Jiang, T. Energy-conscious scheduling problem in a flexible job shop using a discrete water wave optimization algorithm. IEEE Access 2019, 7, 101561–101574. [Google Scholar]
- Lei, D.; Guo, X. Variable neighbourhood search for dual-resource constrained flexible job shop scheduling. Int. J. Prod. Res. 2014, 52, 2519–2529. [Google Scholar]
- Meng, L.; Zhang, C.; Zhang, B.; Ren, Y. Mathematical modeling and optimization of energy-conscious flexible job shop scheduling problem with worker flexibility. IEEE Access 2019, 7, 68043–68059. [Google Scholar]
- Kalra, M.; Singh, S. A review of metaheuristic scheduling techniques in cloud computing. Egypt. Inform. J. 2015, 16, 275–295. [Google Scholar]
- Strumberger, I.; Bacanin, N.; Tuba, M.; Tuba, E. Resource Scheduling in Cloud Computing Based on a Hybridized Whale Optimization Algorithm. Appl. Sci. 2019, 9, 4893. [Google Scholar]
- Sreenu, K.; Sreelatha, M. W-Scheduler: Whale optimization for task scheduling in cloud computing. Clust. Comput. 2019, 22, 1087–1098. [Google Scholar]
- Strumberger, I.; Minovic, M.; Tuba, M.; Bacanin, N. Performance of elephant herding optimization and tree growth algorithm adapted for node localization in wireless sensor networks. Sensors 2019, 19, 2515. [Google Scholar]
- Yang, X.S. Swarm intelligence based algorithms: A critical analysis. Evol. Intell. 2014, 7, 17–28. [Google Scholar]
- Suganuma, M.; Shirakawa, S.; Nagao, T. A genetic programming approach to designing convolutional neural network architectures. In Proceedings of the Genetic and Evolutionary Computation Conference, Berlin, Germany, 15–19 July 2017; pp. 497–504. [Google Scholar]
- Tuba, M.; Bacanin, N. Improved seeker optimization algorithm hybridized with firefly algorithm for constrained optimization problems. Neurocomputing 2014, 143, 197–207. [Google Scholar]
- Strumberger, I.; Tuba, E.; Bacanin, N. Dynamic tree growth algorithm for load scheduling in cloud environments. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 65–72. [Google Scholar]
- Duman, E.; Uysal, M.; Alkaya, A.F. Migrating Birds Optimization: A new metaheuristic approach and its performance on quadratic assignment problem. Inf. Sci. 2012, 217, 65–77. [Google Scholar]
- Meng, T.; Pan, Q.K.; Li, J.Q.; Tuba, M. An improved migrating birds optimization for an integrated lot-streaming flow shop scheduling problem. Swarm Evol. Comput. 2018, 38, 64–78. [Google Scholar]
- Niroomand, S.; Hadi-Vencheh, A.; Şahin, R.; Vizvári, B. Modified migrating birds optimization algorithm for closed loop layout with exact distances in flexible manufacturing systems. Expert Syst. Appl. 2015, 42, 6586–6597. [Google Scholar]
- Ulker, E.; Tongur, V. Migrating birds optimization (MBO) algorithm to solve knapsack problem. Procedia Comput. Sci. 2017, 111, 71–76. [Google Scholar]
- Tongur, V.; Ülker, E. The analysis of migrating birds optimization algorithm with neighborhood operator on traveling salesman problem. In Intelligent and Evolutionary Systems; Springer: Cham, Switzerland, 2016; pp. 227–237. [Google Scholar]
- Oz, D. An improvement on the Migrating Birds Optimization with a problem-specific neighboring function for the multi-objective task allocation problem. Expert Syst. Appl. 2017, 67, 304–311. [Google Scholar]
- Pezzella, F.; Morganti, G.; Ciaschetti, G. A genetic algorithm for the flexible job-shop scheduling problem. Comput. Oper. Res. 2008, 35, 3202–3212. [Google Scholar]
- Jovanovic, R.; Voß, S. Fixed Set Search Applied to the Minimum Weighted Vertex Cover Problem. In International Symposium on Experimental Algorithms; Springer: Cham, Switzerland, 2019; pp. 490–504. [Google Scholar]
- Jovanovic, R.; Tuba, M.; Voß, S. Fixed set search applied to the traveling salesman problem. In International Workshop on Hybrid Metaheuristics; Springer: Cham, Switzerland, 2019; pp. 63–77. [Google Scholar]
- Jiang, T.; Zhang, C.; Zhu, H.; Deng, G. Energy-efficient scheduling for a job shop using an improved whale optimization algorithm. Mathematics 2018, 6, 220–239. [Google Scholar]
nop | |||||||||
---|---|---|---|---|---|---|---|---|---|
[1, 5] | [2, m] | [2, w] | [15, 30] | [10, 20] | [6, 12] | [5, 10] | [1, 3] | [12, 20] |
Instance | MMBO | MBO1 | |||||||
---|---|---|---|---|---|---|---|---|---|
Best | Avg. | ARPD | Time | Best | Avg. | ARPD | Time | ||
RM01 | 10 × 10 × 6 | 9588 | 9865.5 | 3.53 | 23.8 | 9696 | 10,089.8 | 5.89 | 24.0 |
RM02 | 10 × 20 × 6 | 22,347 | 22,970.0 | 2.79 | 66.7 | 24,080 | 24,336.4 | 8.90 | 64.3 |
RM03 | 10 × 30 × 6 | 33,351 | 34,018.9 | 2.88 | 130.5 | 34,999 | 35,830.6 | 8.36 | 121.5 |
RM04 | 10 × 50 × 6 | 57,298 | 58,542.5 | 2.48 | 303.5 | 62,475 | 63,914.8 | 11.89 | 279.2 |
RM05 | 10 × 80 × 6 | 113,813 | 116,054.4 | 1.97 | 667.5 | 126,105 | 129,280.6 | 13.59 | 658.6 |
RM06 | 15 × 10 × 9 | 8324 | 8598.8 | 3.30 | 30.5 | 8421 | 8708.4 | 4.62 | 29.0 |
RM07 | 15 × 20 × 9 | 18,334 | 19,149.9 | 4.45 | 84.7 | 19,437 | 19,767.8 | 7.82 | 72.5 |
RM08 | 15 × 30 × 9 | 29,063 | 29,906.4 | 2.98 | 150.7 | 30,338 | 31,387.4 | 8.08 | 130.6 |
RM09 | 15 × 50 × 9 | 54,172 | 55,361.1 | 2.51 | 355.9 | 58,186 | 58,710.6 | 8.71 | 300.1 |
RM10 | 15 × 80 × 9 | 103,491 | 104,707.1 | 1.18 | 820.9 | 115,624 | 117,196.6 | 13.24 | 729.4 |
RM11 | 20 × 10 × 12 | 8259 | 8457.5 | 2.40 | 37.4 | 8370 | 8493.4 | 2.84 | 30.0 |
RM12 | 20 × 20 × 12 | 17,736 | 18,447.0 | 4.01 | 103.0 | 18,863 | 19106.0 | 7.72 | 78.0 |
RM13 | 20 × 30 × 12 | 27,732 | 28,833.5 | 3.97 | 194.9 | 28,961 | 29,667.2 | 6.98 | 146.5 |
RM14 | 20 × 50 × 12 | 52,213 | 53,483.0 | 2.43 | 426.4 | 54,483 | 55,211.8 | 5.74 | 344.6 |
RM15 | 20 × 80 × 12 | 98,071 | 100,441.3 | 2.42 | 944.4 | 107,788 | 110,569.8 | 12.74 | 758.8 |
RM16 | 25 × 10 × 15 | 7704 | 7828.3 | 2.12 | 42.4 | 7666 | 7782.4 | 1.52 | 32.7 |
RM17 | 25 × 20 × 15 | 16,621 | 16,964.3 | 2.07 | 114.3 | 16,888 | 17,551.4 | 5.60 | 90.3 |
RM18 | 25 × 30 × 15 | 25,708 | 26,074.5 | 2.83 | 203.6 | 26,442 | 26,712.8 | 5.35 | 162.1 |
RM19 | 25 × 50 × 15 | 49,020 | 50,020.3 | 2.89 | 436.2 | 50,874 | 52,262.4 | 7.50 | 374.5 |
RM20 | 25 × 80 × 15 | 96,029 | 97,181.2 | 1.20 | 1099.2 | 105,785 | 106,591.2 | 11.00 | 823.2 |
Instance | MBO2 | MBO3 | |||||||
Best | Avg. | ARPD | Time | Best | Avg. | ARPD | Time | ||
RM01 | 10 × 10 × 6 | 9529 | 9850.8 | 3.38 | 23.5 | 9706 | 9918.8 | 4.09 | 27.4 |
RM02 | 10 × 20 × 6 | 22,627 | 23,807.2 | 6.53 | 64.5 | 22,868 | 23,185.2 | 3.75 | 74.0 |
RM03 | 10 × 30 × 6 | 33,065 | 33,810.7 | 2.26 | 117.2 | 33,583 | 33,970.8 | 2.74 | 132.0 |
RM04 | 10 × 50 × 6 | 57,123 | 58,310.0 | 2.08 | 276.0 | 57,971 | 58,585.2 | 2.56 | 304.3 |
RM05 | 10 × 80 × 6 | 115,800 | 117,652.8 | 3.37 | 632.8 | 115,076 | 117,048.8 | 2.84 | 690.7 |
RM06 | 15 × 10 × 9 | 8470 | 8633.7 | 3.72 | 25.9 | 8407 | 8603.4 | 3.36 | 30.2 |
RM07 | 15 × 20 × 9 | 19,035 | 19,387.7 | 5.75 | 74.2 | 18,868 | 19,362.2 | 5.61 | 86.5 |
RM08 | 15 × 30 × 9 | 29,042 | 29,796.7 | 2.60 | 122.9 | 29,379 | 29,854.4 | 2.80 | 152.7 |
RM09 | 15 × 50 × 9 | 54,007 | 55,111.9 | 2.05 | 293.8 | 54,253 | 55,768.8 | 3.26 | 341.0 |
RM10 | 15 × 80 × 9 | 103,888 | 104,957.7 | 1.42 | 719.6 | 104,286 | 105,955.2 | 2.38 | 780.8 |
RM11 | 20 × 10 × 12 | 8327 | 8489.9 | 2.80 | 28.7 | 8287 | 8404.6 | 1.76 | 35.5 |
RM12 | 20 × 20 × 12 | 17,864 | 18,519.7 | 4.42 | 85.3 | 17,803 | 18,283.8 | 3.09 | 102.5 |
RM13 | 20 × 30 × 12 | 27,916 | 28,451.3 | 2.59 | 147.1 | 28,247 | 28,491.6 | 2.74 | 165.1 |
RM14 | 20 × 50 × 12 | 53,014 | 53,582.4 | 2.62 | 338.2 | 52,355 | 53,707.6 | 2.86 | 419.2 |
RM15 | 20 × 80 × 12 | 98,552 | 100,016.5 | 1.98 | 788.4 | 98,248 | 99,705.2 | 1.67 | 859.5 |
RM16 | 25 × 10 × 15 | 7672 | 7796.3 | 1.70 | 29.1 | 7666 | 7816.0 | 1.96 | 42.0 |
RM17 | 25 × 20 × 15 | 16,770 | 16,994.2 | 2.25 | 79.8 | 16,685 | 17,266.4 | 3.88 | 109.3 |
RM18 | 25 × 30 × 15 | 25,478 | 25,818.9 | 1.83 | 140.4 | 25,356 | 25,763.2 | 1.61 | 193.3 |
RM19 | 25 × 50 × 15 | 48,616 | 49,959.3 | 2.76 | 319.1 | 49,870 | 50,074.0 | 3.00 | 466.1 |
RM20 | 25 × 80 × 15 | 97,474 | 98,483.8 | 2.56 | 777.5 | 96,966 | 97,951.4 | 2.00 | 1037.6 |
Source | DF | Sum of Squares | Mean Square | F Value | p Value |
---|---|---|---|---|---|
Factor | 3 | 383.63937 | 127.87979 | 35.40111 | 2.0095 × 10−14 |
Error | 76 | 274.53557 | 3.61231 | ||
Total | 79 | 658.17494 |
Instance | MMBO | VNS | IWOA | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Best | Avg. | ARPD | Time | Best | Avg. | ARPD | Time | Best | Avg. | ARPD | Time | ||
RM01 | 10 × 10 × 6 | 9588 | 9865.5 | 2.89 | 23.8 | 9839 | 10,244.8 | 6.85 | 7.3 | 11,089 | 11,307.0 | 17.93 | 8.1 |
RM02 | 10 × 20 × 6 | 22,347 | 22,970.0 | 2.79 | 66.7 | 24,096 | 25,186 | 12.70 | 10.3 | 29,258 | 30,355.6 | 35.84 | 21.4 |
RM03 | 10 × 30 × 6 | 33,351 | 34,018.9 | 2.00 | 130.5 | 36,103 | 37,296.4 | 11.83 | 14.7 | 41,631 | 44,732.8 | 34.13 | 39.7 |
RM04 | 10 × 50 × 6 | 57,298 | 58,542.5 | 2.17 | 303.5 | 63,475 | 64,937.2 | 13.33 | 27.6 | 80,901 | 85,493.2 | 49.21 | 91.9 |
RM05 | 10 × 80 × 6 | 113,813 | 116,054.4 | 1.97 | 667.5 | 127,773 | 131,051.2 | 15.15 | 61.9 | 183,505 | 186,510.6 | 63.87 | 212.9 |
RM06 | 15 × 10 × 9 | 8324 | 8598.8 | 3.30 | 30.5 | 8822 | 8985.2 | 7.94 | 8.5 | 9851 | 10,147.8 | 21.91 | 8.5 |
RM07 | 15 × 20 × 9 | 18,334 | 19,149.9 | 4.45 | 84.7 | 21,079 | 21,417.8 | 16.82 | 11.4 | 23,143 | 24,873.4 | 35.67 | 23.3 |
RM08 | 15 × 30 × 9 | 29,063 | 29,906.4 | 2.90 | 150.7 | 31,382 | 32,548.0 | 11.99 | 15.6 | 40,030 | 41,550.4 | 42.97 | 41.1 |
RM09 | 15 × 50 × 9 | 54,172 | 55,361.1 | 2.20 | 355.9 | 59,499 | 61,390 | 13.32 | 28.0 | 77,961 | 82,297.4 | 51.92 | 100.0 |
RM10 | 15 × 80 × 9 | 103,491 | 104,707.1 | 1.18 | 820.9 | 118,048 | 121,022.6 | 16.94 | 65.6 | 167,560 | 172,486 | 66.67 | 213.8 |
RM11 | 20 × 10 × 12 | 8259 | 8457.5 | 2.40 | 37.4 | 8729 | 8939.0 | 8.23 | 7.6 | 9314 | 9851.8 | 19.29 | 8.9 |
RM12 | 20 × 20 × 12 | 17,736 | 18,447.0 | 4.01 | 103.0 | 19,958 | 20,384.6 | 14.93 | 11.0 | 24,348 | 25,053.4 | 41.26 | 24.9 |
RM13 | 20 × 30 × 12 | 27,732 | 28,833.5 | 3.97 | 194.9 | 30,359 | 31,759.2 | 14.52 | 15.6 | 38,457 | 40,512.6 | 46.09 | 43.1 |
RM14 | 20 × 50 × 12 | 52,213 | 53,483.0 | 2.43 | 426.4 | 58,905 | 59,957 | 14.83 | 31.2 | 81,699 | 85,436.0 | 63.63 | 105.7 |
RM15 | 20 × 80 × 12 | 98,071 | 100,441.3 | 2.42 | 944.4 | 110,985 | 113,107.0 | 15.33 | 67.4 | 155,883 | 168,369.8 | 71.68 | 237.1 |
RM16 | 25 × 10 × 15 | 7704 | 7828.3 | 1.61 | 42.4 | 8117 | 8359.0 | 8.50 | 8.0 | 8976 | 9318.2 | 20.95 | 9.6 |
RM17 | 25 × 20 × 15 | 16,621 | 16,964.3 | 2.07 | 114.3 | 18,304 | 19,131.0 | 15.10 | 12.4 | 23,126 | 23,744.2 | 42.86 | 25.8 |
RM18 | 25 × 30 × 15 | 25,708 | 26,074.5 | 1.43 | 203.6 | 29,204 | 29,598.0 | 15.13 | 16.6 | 37,902 | 38,599.6 | 50.15 | 47.2 |
RM19 | 25 × 50 × 15 | 49,020 | 50,020.3 | 2.04 | 436.2 | 55,360 | 56,950.6 | 16.18 | 31.3 | 76,848 | 80,789.4 | 64.81 | 106.6 |
RM20 | 25 × 80 × 15 | 96,029 | 97,181.2 | 1.20 | 1099.2 | 107,528 | 111,204.6 | 15.80 | 71.7 | 161,517 | 170,567.4 | 77.62 | 258.5 |
Source | DF | Sum of Squares | Mean Square | F Value | p Value |
---|---|---|---|---|---|
Factor | 2 | 1555.056 | 777.528 | 115.41936 | 0 |
Error | 57 | 383.98322 | 6.73655 | ||
Total | 59 | 1939.03922 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Zhu, H.; Jiang, T. Modified Migrating Birds Optimization for Energy-Aware Flexible Job Shop Scheduling Problem. Algorithms 2020, 13, 44. https://doi.org/10.3390/a13020044
Li H, Zhu H, Jiang T. Modified Migrating Birds Optimization for Energy-Aware Flexible Job Shop Scheduling Problem. Algorithms. 2020; 13(2):44. https://doi.org/10.3390/a13020044
Chicago/Turabian StyleLi, Hongchan, Haodong Zhu, and Tianhua Jiang. 2020. "Modified Migrating Birds Optimization for Energy-Aware Flexible Job Shop Scheduling Problem" Algorithms 13, no. 2: 44. https://doi.org/10.3390/a13020044
APA StyleLi, H., Zhu, H., & Jiang, T. (2020). Modified Migrating Birds Optimization for Energy-Aware Flexible Job Shop Scheduling Problem. Algorithms, 13(2), 44. https://doi.org/10.3390/a13020044