Adaptive Tolerance Dehazing Algorithm Based on Dark Channel Prior
Abstract
:1. Introduction
2. Related Work
2.1. Atmospheric Scattering Model
2.2. Dark Channel Prior Dehazing Algorithm
2.3. Defect of DCP
2.4. Tolerance Mechanism to Correct Transmission and Its Defects
3. Our Improved Method
3.1. Calculation of Adaptive Tolerance
3.2. Threshold of Tolerance Mechanism
4. Comparison and Analysis of Experiential Results
4.1. Qualitative Comparison of Real-World Images
4.2. Qualitative Comparison of Synthetic Images
4.3. Quantitative Comparison
4.3.1. Blind Contrast Enhancement Assessment
4.3.2. Structural Similarity (SSIM) Image Quality Assessment
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Narasimhan, S.G.; Nayar, S.K. Vision and the Atmosphere. Int. J. Comput. Vision 2002, 48, 233–254. [Google Scholar] [CrossRef]
- Kim, T.K.; Paik, J.K.; Kang, B.S. Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering. IEEE Trans. Consum. Electron. 1998, 44, 82–87. [Google Scholar]
- Seown, M.J.; Asari, V.K. Ratio rule and homomorphic filter for enhancement of digital colour image. Neurocomputing 2006, 69, 954–958. [Google Scholar]
- Joshi, K.R.; Kamathe, R.S. Quantification of retinex in enhancement of weather degraded images. In Proceedings of the International Conference on Audio, Language and Image Processing IEEE, Shanghai, China, 7–9 July 2008; pp. 1229–1233. [Google Scholar]
- Mccartney, E.J. Optics of the atmosphere: Scattering by molecules and particles. Optica Acta Int. J. Optics 1997, 24, 779. [Google Scholar] [CrossRef]
- Fattal, R. Single image dehazing. Acm Trans. Graphics 2008, 27, 1–9. [Google Scholar] [CrossRef]
- Tarel, J.P.; Hautière, N. Fast visibility restoration from a single color or gray level image. In Proceedings of the IEEE International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 2201–2208. [Google Scholar]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 2341–2353. [Google Scholar]
- Levin, A.; Lischinski, D.; Weiss, Y. A closed form solution to natural image matting. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 30, 228–242. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Kumar, V. Dehazing of remote sensing images using improved restoration model based dark channel prior. Imaging Sci. J. 2017, 65, 282–292. [Google Scholar] [CrossRef]
- Singh, D.; Kumar, V. Modified gain intervention filter based dehazing technique. J. Modern Optics 2017, 64, 2165–2178. [Google Scholar] [CrossRef]
- Singh, D.; Kumar, V. Dehazing of remote sensing images using fourth-order partial differential equations based trilateral filter. IET Comp. Vision 2018, 12, 208–219. [Google Scholar] [CrossRef]
- Cai, B.; Xu, X.; Jia, K.; Qing, C.; Tao, D. Dehazenet: An end-to-end system for single image haze removal. IEEE Trans. Image Process. 2016, 25, 5187–5198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Li, G.; Fan, H. Image dehazing using residual-based Deep CNN. IEEE Access 2018, 6, 26831–26842. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.H.; Huang, S.C.; Cheng, F.C. A high-efficiency and high-speed gain intervention refinement filter for haze removal. J. Disp. Technol. 2016, 12, 753–759. [Google Scholar] [CrossRef]
- Yu, T.; Riaz, I.; Piao, J.; Shin, H. Real-time single image dehazing using block-to-pixel interpolation and adaptive dark channel prior. IET Image Process. 2015, 9, 725–734. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, J.; Zhu, Z.; Yao, W.; Wu, S. Weighted guided image filtering. IEEE Trans. Image Process. 2014, 24, 120–129. [Google Scholar]
- Li, Z.; Zheng, J. Edge-preserving decomposition-based single image haze removal. IEEE Trans. Image Process. 2015, 24, 5432–5441. [Google Scholar] [CrossRef]
- Xiang, R.; Zhu, X.; Wu, F.; Jiang, X.; Xu, Q. Guided filter based on multikernel fusion. J. Electron. Imaging 2017, 26, 033027. [Google Scholar] [CrossRef]
- Cong-Hua, X.; Wei-Wei, Q.; Xiu-Xiang, Z.; Feng, Z. Single image dehazing algorithm using wavelet decomposition and fast kernel regression model. J. Electron. Imaging 2016, 25, 043003. [Google Scholar] [CrossRef]
- Wang, G.; Ren, G.; Jiang, L.; Quan, T. Single image dehazing algorithm based on sky region segmentation. Inf. Technol. J. 2013, 12, 1168–1175. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, H.; Wang, M. Single image dehazing via large sky region segmentation and multiscale opening dark channel model. IEEE Access 2017, 5, 8890–8903. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; She, C.; Wang, S.; Zhang, Z. Saliency-driven single image haze removal method based on reliable airlight and transmission. J. Electron. Imaging 2018, 27, 023038. [Google Scholar] [CrossRef]
- Gao, Y.; Yun, L.; Shi, J.; Li, C. Enhancement dark channel theory algorithm of fog image based on fourth-order PDE model. J. Nanjing Univ. Sci. Technol. 2015, 39, 6. [Google Scholar] [CrossRef]
- Narasimhan, S.G.; Nayar, S.K. Contrast restoration of weather degraded images. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 713–724. [Google Scholar] [CrossRef] [Green Version]
- Narasimhan, S.G.; Nayar, S.K. Interactive (de) weathering of an image using physical models. In Proceedings of the IEEE Workshop on Color and Photometric Methods in Computer Vision, Nice, France, 12 October 2003. [Google Scholar]
- Shi, L.; Yang, L.; Cui, X.; Gai, Z.; Chu, S.; Shi, J. Image dehazing using dark channel prior and the corrected transmission map. In Proceedings of the 2016 2nd International Conference on Control, Automation and Robotics (ICCAR), Hong Kong, 1 March 2016. [Google Scholar]
- Peli, E. Contrast in complex images. J. Opt. Soc. Am. Opt. Image Sci. Vision 1990, 7, 2032–2040. [Google Scholar] [CrossRef]
- Kim, J.H.; Sim, J.Y.; Kim, C.S. Single image dehazing based on contrast enhancement. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, Czech Republic, 22–27 May 2011; pp. 1273–1276. [Google Scholar]
- Scharstein, D.; Szeliski, R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vision 2002, 47, 7–42. [Google Scholar] [CrossRef]
- Scharsteinet, D.; Hirschmüller, H.; Kitajima, Y.; Krathwohl, G.; Nešić, N.; Wang, X.; Westling, P. High-resolution stereo datasets with subpixel-accurate ground truth. In Proceedings of the German Conference on Pattern Recognition, Münster, Germany, 2–5 September 2014; pp. 31–42. [Google Scholar]
- Hautière, N.; Tarel, J.P.; Aubert, D.; Dumont, E. Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Anal. Stereol. 2008, 27, 87–95. [Google Scholar] [CrossRef]
- Yuan, H.; Liu, C.; Guo, Z.; Sun, Z. A region-wised medium transmission based image dehazing method. IEEE Access 2017, 5, 1735–1742. [Google Scholar] [CrossRef]
- Wang, Z. Image quality assessment: From errsor visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
Methods | Tarel’s Method | He’s Method | Cai’s Method | Introducing Fixed Tolerance | Our Method | |
---|---|---|---|---|---|---|
Indexes | ||||||
Image 1 | e | 0.3163 | 0.1873 | 0.1116 | 0.1447 | 0.1918 |
σ | 0 | 0 | 0.002 | 0 | 0 | |
r | 1.7532 | 0.9660 | 0.1023 | 1.2540 | 1.3576 | |
Image 2 | e | 2.2372 | 0.2567 | 0.3605 | 0.2518 | 0.6276 |
σ | 0 | 0 | 0.0126 | 0 | 0 | |
r | 2.3742 | 0.7349 | 1.1263 | 1.0557 | 1.2857 | |
Image 3 | e | 0.3086 | 0.0723 | 0.1417 | 0.1174 | 0.1654 |
σ | 0 | 0 | 0.0038 | 0 | 0 | |
r | 1.5427 | 1.0296 | 1.0957 | 1.1384 | 1.4328 | |
Image 4 | e | 0.1752 | 0.0894 | 0.0060 | 0.0920 | 0.1103 |
σ | 0 | 0 | 0.0092 | 0 | 0 | |
r | 1.3786 | 1.0870 | 1.0894 | 1.2175 | 1.7019 | |
Image 5 | e | 1.3827 | 0.6887 | 0.5149 | 0.5483 | 0.8144 |
σ | 0 | 0 | 0.0052 | 0.0052 | 0.0018 | |
r | 1.8337 | 1.4929 | 1.4040 | 1.5380 | 1.7013 |
Image | Tarel ’s Method | He’s Method | Cai ’s Method | Introducing Fixed Tolerance | Our Method |
---|---|---|---|---|---|
Image 1 | 0.7867 | 0.9152 | 0.9463 | 0.9043 | 0.9222 |
Image 2 | 0.7984 | 0.8570 | 0.9094 | 0.8617 | 0.8902 |
Image 3 | 0.7322 | 0.8062 | 0.9115 | 0.7859 | 0.8578 |
Image 4 | 0.7619 | 0.8691 | 0.9163 | 0.8589 | 0.8755 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Tang, S. Adaptive Tolerance Dehazing Algorithm Based on Dark Channel Prior. Algorithms 2020, 13, 45. https://doi.org/10.3390/a13020045
Yang F, Tang S. Adaptive Tolerance Dehazing Algorithm Based on Dark Channel Prior. Algorithms. 2020; 13(2):45. https://doi.org/10.3390/a13020045
Chicago/Turabian StyleYang, Fan, and ShouLian Tang. 2020. "Adaptive Tolerance Dehazing Algorithm Based on Dark Channel Prior" Algorithms 13, no. 2: 45. https://doi.org/10.3390/a13020045
APA StyleYang, F., & Tang, S. (2020). Adaptive Tolerance Dehazing Algorithm Based on Dark Channel Prior. Algorithms, 13(2), 45. https://doi.org/10.3390/a13020045