Variation Trends of Fractal Dimension in Epileptic EEG Signals
Abstract
:1. Introduction
2. Data and Methods
2.1. EEG Signals
2.2. Higuchi Algorithm
2.3. RSE Algorithm
2.4. Analysis Flow
3. Results and Discussion
4. Conclusions
- could quantify the complexity of EEG signals, and the noise had a significant influence on variation trends of EEG signals. After denoised, the following ratio calculated by all algorithms could be increased from 72% to 99%;
- After using the scaling region interception method, obtained by RSE-f1sc and RSE-f2sc were more favorable to distinguish the seizure status from normal status, because values in normal status were generally below 1, which indicated the non-fractal nature of EEG signals in such cases. The capability of RSE algorithm to quantify the complexity of non-fractal features could be promising for the analysis on EEG signals. The underlying mechanism of RSE algorithm and the fractal nature of EEG signals in more clinical events would be investigated in our future study.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gabard, D.L.J.; Wilkinson, C.; Kapur, K.; Tager, F.H.; Levin, A.R.; Nelson, C.A. Longitudinal EEG power in the first postnatal year differentiates autism outcomes. Nat. Commun. 2019, 10, 4188. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, Y.; Jiang, J.; Lucas, M.V.; Fonzo, G.A.; Rolle, C.E.; Cooper, C.; Chin, F.C.; Krepel, N.; Cornelssen, C.A.; et al. An electroencephalographic signature predicts antidepressant response in major depression. Nat. Biotechnol. 2020, 38, 439–447. [Google Scholar] [CrossRef]
- Nilsonne, G.; Harrell, F.E. EEG-based model and antidepressant response. Nat. Biotechnol. 2021, 39, 27. [Google Scholar] [CrossRef]
- Seeber, M.; Cantonas, L.M.; Hoevels, M.; Sesia, T.; Visser, V.V.; Michel, C.M. Subcortical electrophysiological activity is detectable with high-density EEG source imaging. Nat. Commun. 2019, 10, 753. [Google Scholar] [CrossRef] [Green Version]
- Soekadar, S.R.; Witkowski, M.; Gómez, C.; Opisso, E.; Medina, J.; Cortese, M.; Cempini, M.; Carrozza, M.C.; Cohen, L.G.; Birbaumer, N.; et al. Hybrid EEG/EOG-based brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia. Sci. Robot. 2016, 1, eaag3296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zflores, E.; Trujillo, L.; Legrand, P.; Faïta, A.F. EEG Feature Extraction Using Genetic Programming for the Classification of Mental States. Algorithms 2020, 13, 221. [Google Scholar] [CrossRef]
- Zahedi, A.; Stuermer, B.; Hatami, J.; Rostami, R.; Sommer, W. Eliminating stroop effects with post-hypnotic instructions: Brain mechanisms inferred from EEG. Neuropsychologia 2017, 96, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Ciprian, C.; Masychev, K.; Ravan, M.; Manimaran, A.; Deshmukh, A. Diagnosing Schizophrenia Using Effective Connectivity of Resting-State EEG Data. Algorithms 2021, 14, 139. [Google Scholar] [CrossRef]
- Klassen, B.T.; Hentz, J.G.; Shill, H.A.; Driver-Dunckley, E.; Evidente, V.G.H.; Sabbagh, M.N.; Adler, C.H.; Caviness, J.N. Quantitative EEG as a predictive biomarker for Parkinson disease dementia. Neurology 2011, 77, 118–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purnamasari, P.; Ratna, A.; Kusumoputro, B. Development of Filtered Bispectrum for EEG Signal Feature Extraction in Automatic Emotion Recognition Using Artificial Neural Networks. Algorithms 2017, 10, 63. [Google Scholar] [CrossRef]
- Murugappan, M.; Ramachandran, N.; Sazali, Y. Classification of human emotion from EEG using discrete wavelet transform. J. Biomed. Sci. Eng. 2010, 3, 390–396. [Google Scholar] [CrossRef] [Green Version]
- Jenke, R.; Peer, A.; Buss, M. Feature Extraction and Selection for Emotion Recognition from EEG. IEEE Trans. Affect. Comput. 2014, 5, 327–339. [Google Scholar] [CrossRef]
- Ravan, M. A machine learning approach using EEG signals to measure sleep quality. AIMS Electron. Electr. Eng. 2019, 3, 347–358. [Google Scholar] [CrossRef]
- Aldayel, M.; Ykhlef, M.; Al-Nafjan, A. Recognition of Consumer Preference by Analysis and Classification EEG Signals. Front. Hum. Neurosci. 2021, 14, 560. [Google Scholar] [CrossRef] [PubMed]
- Damaševičius, R.; Maskeliūnas, R.; Kazanavičius, E.; Woźniak, M. Combining Cryptography with EEG Biometrics. Comput. Intell. Neurosci. 2018, 2018, 1867548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martišius, I.; Damaševičius, R. A Prototype SSVEP Based Real Time BCI Gaming System. Comput. Intell. Neurosci. 2016, 2016, 3861425. [Google Scholar] [CrossRef] [Green Version]
- Lachaux, J.P.; Axmacher, N.; Mormann, F.; Halgren, E.; Crone, N.E. High-frequency neural activity and human cognition: Past, present and possible future of intracranial EEG research. Prog. Neurobiol. 2012, 98, 279–301. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Q.; Zhou, W.; Liu, Y.; Wang, J. Epileptic Seizure detection with linear and nonlinear features. Epilepsy Behav. 2012, 24, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Paramanathan, P.; Uthayakumar, R. Application of fractal theory in analysis of human electroencephalographic signals. Comput. Biol. Med. 2008, 38, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Kesic, S.; Spasic, S.Z. Application of Higuchi’s fractal dimension from basic to clinical neurophysiology: A review. Comput. Meth. Prog. Bio. 2016, 133, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Khoa, T.Q.; Ha, V.Q.; Toi, V.V. Higuchi fractal properties of onset epilepsy electroencephalogram. Comput. Math. Methods Med. 2012, 2012, 461426. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhang, J.; Feng, F.; Qian, X.; Jiang, L.; Huang, J.; Liu, B.; Li, J.; Xia, Y.; Feng, P. Fractal Analysis on Artificial Profiles and Electroencephalography Signals by Roughness Scaling Extraction Algorithm. IEEE Access 2019, 7, 89265–89277. [Google Scholar] [CrossRef]
- Li, Z.; Qian, X.; Feng, F.; Qu, T.; Xia, Y.; Zhou, W. A Continuous Variation of Roughness Scaling Characteristics across Fractal and Non-Fractal Profiles. Fractals 2021, 29, 2150109-638. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, W.; Yuan, S.; Yuan, Q. Seizure detection method based on fractal dimension and gradient boosting. Epilepsy Behav. 2015, 43, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Polychronaki, G.E.; Ktonas, P.Y.; Gatzonis, S.; Siatouni, A.; Asvestas, P.A.; Tsekou, H.; Sakas, D.; Nikita, K.S. Comparison of fractal dimension estimation algorithms for epileptic seizure onset detection. J. Neural Eng. 2010, 7, 046007. [Google Scholar] [CrossRef]
- Esteller, R.; Vachtsevanos, G.; Echauz, J.; Litt, B. A comparison of waveform fractal dimension algorithms. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2001, 48, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Esteller, R.; Vachtsevanos, G.; Echauz, J.; Lilt, B. A comparison of fractal dimension algorithms using synthetic and experimental data. In Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, Orlando, FL, USA, 30 May–2 June 1999. [Google Scholar]
- Romo, V.R.; Vélez, P.H.; Ranta, R.; Louis, D.V.; Maquin, D.; Maillard, L. Blind source separation, wavelet denoising and discriminant analysis for EEG artefacts and noise cancelling. Biomed. Signal Process. Control 2012, 7, 389–400. [Google Scholar] [CrossRef] [Green Version]
- Kalpakam, N.V.; Venkataramanan, S. Haar wavelet decomposition of EEG signal for ocular artifact denoising: A mathematical analysis. In Proceedings of the 2nd Annu IEEE N W Circ Syst NEWCAS 2004, Montreal, QC, Canada, 23–23 June 2004; pp. 141–144. [Google Scholar]
- Sharma, R.; Pachori, R.B. Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions. Expert Syst. Appl. 2015, 42, 1106–1117. [Google Scholar] [CrossRef]
- Sweeney-Reed, C.M.; Nasuto, S.J. A novel approach to the detection of synchronisation in EEG based on empirical mode decomposition. J. Comput. Neurosci. 2007, 23, 79–111. [Google Scholar] [CrossRef] [PubMed]
- Shoeb, A. Application of Machine Learning to Epileptic Seizure Onset Detection and Treatment. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2009. [Google Scholar]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, E215–E220. [Google Scholar] [CrossRef] [Green Version]
- Mansouri, A.; Singh, S.P.; Sayood, K. Online EEG Seizure Detection and Localization. Algorithms 2019, 12, 176. [Google Scholar] [CrossRef] [Green Version]
- Higuchi, T. Approach to an irregular time series on the basis of the fractal theory. Physica D 1988, 31, 277–283. [Google Scholar] [CrossRef]
- Gomez, C.; Mediavilla, A.; Hornero, R.; Abasolo, D.; Fernandez, A. Use of the Higuchi’s fractal dimension for the analysis of MEG recordings from Alzheimer’s disease patients. Med. Eng. Phys. 2009, 31, 306–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachmann, M.; Lass, J.; Suhhova, A.; Hinrikus, H. Spectral asymmetry and Higuchi’s fractal dimension measures of depression electroencephalogram. Comput. Math. Methods Med. 2013, 2013, 251638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, Y.S.; Feng, P.F.; Qian, X.; X., M.Z.; Li, Z.W.; Zhou, W.M.; Feng, F. Properties and benefits of scaling region in fractal analysis by using roughness scaling extraction algorithm. Pattern Recognit. 2021. under review. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality. Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Roussas, G.G. An Introduction to Probability and Statistical Inference; Elsevier: London, UK, 2015. [Google Scholar]
- Zhou, G.; Wang, X.; Feng, F.; Feng, P.; Zhang, M. Calculation of fractal dimension based on artificial neural network and its application for machined surfaces. Fractals 2021, 29, 2150129. [Google Scholar] [CrossRef]
File Names (Patients) | Seizure Labels | Number | Seizure Durations (s) |
---|---|---|---|
CHB01 (1) | 6 | 1–6 | 400–(440,427,440,451,490,501) |
CHB03 (3) | 6 | 7–12 | 400–(465,469,452,447,464,453) |
CHB04 (4) | 3 | 13–15 | 400–(511,505,516) |
CHB05 (5) | 5 | 16–20 | 400–(515,510,496,520,517) |
CHB06 (6) | 8 | 21–28 | 400–(414,415,415,420,416,412,413,416) |
CHB07 (7) | 2 | 29–30 | 400–(486,496) |
CHB09 (9) | 4 | 31–34 | 400–(464,479,471,462) |
CHB10 (10) | 2 | 35–36 | 400–(489,454) |
CHB12 (12) | 31 | 37–67 | 400–(461,413,423,420,432,432, 445,437,497,440,435,427, 425,442,452,448,438,436, 446,421,423,427,425,423, 443,455,451,428,429,425,423) |
CHB13 (13) | 1 | 68 | 400–465 |
CHB14 (14) | 7 | 69–75 | 400–(414,420,422,414,441,422,416) |
CHB15 (15) | 1 | 76 | 400–577 |
CHB16 (16) | 1 | 77 | 400–414 |
CHB17 (17) | 3 | 78–80 | 400–(490,515,488) |
CHB18 (18) | 3 | 81–83 | 400–(455,468,446) |
CHB19 (19) | 1 | 84 | 400–477 |
CHB20 (20) | 6 | 85–90 | 400–(430,439,438,449,435,439) |
CHB21 (21) | 1 | 91 | 400–412 |
CHB22 (22) | 2 | 92–93 | 400–(474,472) |
CHB23 (23) | 6 | 94–99 | 400–(513,447,471,462,427,484) |
CHB24 (24) | 10 | 100–109 | 400–(425,425,425,432,427,419, 424,419,427,468) |
Data | Algorithm | W | p-Value |
---|---|---|---|
EEG-raw | Higuchi | 0.98944 | 5.58 × 10 |
RSE-f1 | 0.98895 | 5.18 × 10 | |
RSE-f1sc | 0.98831 | 4.68 × 10 | |
RSE-f2 | 0.98811 | 4.52 × 10 | |
RSE-f2sc | 0.98258 | 1.66 × 10 | |
EEG-denoised | Higuchi | 0.98921 | 5.39 × 10 |
RSE-f1 | 0.96064 | 2.65 × 10 | |
RSE-f1sc | 0.96723 | 8.68 × 10 | |
RSE-f2 | 0.95819 | 1.74 × 10 | |
RSE-f2sc | 0.97522 | 3.95 × 10 |
Algorithm | W | p-Value |
---|---|---|
Higuchi | 8733 | 2.02 × 10 |
RSE-f1 | 10553 | <2.2 × 10 |
RSE-f1sc | 10631 | <2.2 × 10 |
RSE-f2 | 10909 | <2.2 × 10 |
RSE-f2sc | 10985 | <2.2 × 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Li, J.; Xia, Y.; Feng, P.; Feng, F. Variation Trends of Fractal Dimension in Epileptic EEG Signals. Algorithms 2021, 14, 316. https://doi.org/10.3390/a14110316
Li Z, Li J, Xia Y, Feng P, Feng F. Variation Trends of Fractal Dimension in Epileptic EEG Signals. Algorithms. 2021; 14(11):316. https://doi.org/10.3390/a14110316
Chicago/Turabian StyleLi, Zhiwei, Jun Li, Yousheng Xia, Pingfa Feng, and Feng Feng. 2021. "Variation Trends of Fractal Dimension in Epileptic EEG Signals" Algorithms 14, no. 11: 316. https://doi.org/10.3390/a14110316
APA StyleLi, Z., Li, J., Xia, Y., Feng, P., & Feng, F. (2021). Variation Trends of Fractal Dimension in Epileptic EEG Signals. Algorithms, 14(11), 316. https://doi.org/10.3390/a14110316