Equilibrium Inefficiency and Computation in Cost-Sharing Games in Real-Time Scheduling Systems †
Abstract
:1. Introduction
1.1. Related Work
1.2. Summary of Our Results and Roadmap
2. Preliminaries
3. Monomial Cost Functions
3.1. Decreasing Cost Shares:
3.2. Increasing Cost Shares:
3.3. Price of Stability
4. Coordination Mechanism
4.1. Unit Server Costs
Algorithm 1 Optimal Coordination Mechanism algorithm for unit-cost |
|
4.2. Monomial Server Costs with
Algorithm 2 An algorithm for finding a NE schedule such that for Laminar instances |
|
4.3. Variable Load-Independent Slot Costs
- 1.
- T stability constraints, guaranteeing that is a SE
- 2.
- B cost-covered constraints, guaranteeing that is feasible, that is, the cost all slots in A is covered
5. Conclusions and Open Problems
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Albers, S. Energy-efficient algorithms. Commun. ACM 2010, 53, 86–96. [Google Scholar] [CrossRef] [Green Version]
- Bar-Noy, A.; Guha, S.; Naor, J.; Schieber, B. Approximating the Throughput of Multiple Machines in Real-Time Scheduling. SIAM J. Comput. 2001, 31, 331–352. [Google Scholar] [CrossRef]
- Chang, J.; Gabow, H.N.; Khuller, S. A Model for Minimizing Active Processor Time. Algorithmica 2014, 70, 368–405. [Google Scholar] [CrossRef] [Green Version]
- Irani, S.; Pruhs, K. Algorithmic problems in power management. SIGACT News 2005, 36, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Khandekar, R.; Schieber, B.; Shachnai, H.; Tamir, T. Real-time scheduling to minimize machine busy times. J. Sched. 2015, 18, 561–573. [Google Scholar] [CrossRef] [Green Version]
- Tamir, T. Cost-Sharing Games in Real-Time Scheduling Systems. In Proceedings of the Web and Internet Economics—14th International Conference, WINE 2018, Oxford, UK, 15–17 December 2018; pp. 423–437. [Google Scholar]
- Rosenthal, R.W. A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 1973, 2, 65–67. [Google Scholar] [CrossRef]
- Awerbuch, B.; Azar, Y.; Epstein, A. The price of routing unsplittable flow. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, 22–24 May 2005; pp. 57–66. [Google Scholar]
- Christodoulou, G.; Koutsoupias, E.; Nanavati, A. Coordination Mechanisms. In Proceedings of the Automata, Languages and Programming: 31st International Colloquium, ICALP 2004, Turku, Finland, 12–16 July 2004; pp. 345–357. [Google Scholar]
- Aland, S.; Dumrauf, D.; Gairing, M.; Monien, B.; Schoppmann, F. Exact Price of Anarchy for Polynomial Congestion Games. SIAM J. Comput. 2011, 40, 1211–1233. [Google Scholar] [CrossRef] [Green Version]
- Koutsoupias, E.; Papadimitriou, C.H. Worst-case equilibria. Comput. Sci. Rev. 2009, 3, 65–69. [Google Scholar] [CrossRef]
- Anshelevich, E.; Dasgupta, A.; Kleinberg, J.M.; Tardos, É.; Wexler, T.; Roughgarden, T. The Price of Stability for Network Design with Fair Cost Allocation. SIAM J. Comput. 2008, 38, 1602–1623. [Google Scholar] [CrossRef]
- Christodoulou, G.; Koutsoupias, E. The price of anarchy of finite congestion games. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, 22–24 May 2005; pp. 67–73. [Google Scholar]
- Roughgarden, T. Intrinsic Robustness of the Price of Anarchy. J. ACM 2015, 62, 32:1–32:42. [Google Scholar] [CrossRef]
- Bhawalkar, K.; Gairing, M.; Roughgarden, T. Weighted Congestion Games: The Price of Anarchy, Universal Worst-Case Examples, and Tightness. ACM Trans. Econ. Comput. 2014, 2, 14:1–14:23. [Google Scholar] [CrossRef]
- Goemans, M.X.; Mirrokni, V.S.; Vetta, A. Sink Equilibria and Convergence. In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), Pittsburgh, PA, USA, 23–25 October 2005; pp. 142–154. [Google Scholar]
- Kollias, K.; Roughgarden, T. Restoring Pure Equilibria to Weighted Congestion Games. ACM Trans. Econ. Comput. 2015, 3, 21:1–21:24. [Google Scholar] [CrossRef] [Green Version]
- Gopalakrishnan, R.; Marden, J.R.; Wierman, A. Potential Games Are Necessary to Ensure Pure Nash Equilibria in Cost Sharing Games. Math. Oper. Res. 2014, 39, 1252–1296. [Google Scholar] [CrossRef] [Green Version]
- Gairing, M.; Kollias, K.; Kotsialou, G. Tight Bounds for Cost-Sharing in Weighted Congestion Games. In Proceedings of the Automata, Languages, and Programming—42nd International Colloquium, ICALP 2015, Kyoto, Japan, 6–10 July 2015; Part II. pp. 626–637. [Google Scholar]
- Gkatzelis, V.; Kollias, K.; Roughgarden, T. Optimal Cost-Sharing in General Resource Selection Games. Oper. Res. 2016, 64, 1230–1238. [Google Scholar] [CrossRef]
- Klimm, M.; Schmand, D. Sharing Non-anonymous Costs of Multiple Resources Optimally. In Proceedings of the Algorithms and Complexity—9th International Conference, CIAC 2015, Paris, France, 20–22 May 2015; pp. 274–287. [Google Scholar]
- Marden, J.R.; Philips, M. Optimizing the price of anarchy in concave cost sharing games. In Proceedings of the 2017 American Control Conference, ACC 2017, Seattle, WA, USA, 24–26 May 2017; pp. 5237–5242. [Google Scholar]
- Marden, J.R.; Wierman, A. Distributed Welfare Games. Oper. Res. 2013, 61, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Roughgarden, T.; Schrijvers, O. Network Cost-Sharing without Anonymity. ACM Trans. Econ. Comput. 2016, 4, 8:1–8:24. [Google Scholar] [CrossRef]
- Chen, H.; Roughgarden, T.; Valiant, G. Designing Network Protocols for Good Equilibria. SIAM J. Comput. 2010, 39, 1799–1832. [Google Scholar] [CrossRef]
- Von Falkenhausen, P.; Harks, T. Optimal Cost Sharing for Resource Selection Games. Math. Oper. Res. 2013, 38, 184–208. [Google Scholar] [CrossRef] [Green Version]
- Azar, Y.; Fleischer, L.; Jain, K.; Mirrokni, V.S.; Svitkina, Z. Optimal Coordination Mechanisms for Unrelated Machine Scheduling. Oper. Res. 2015, 63, 489–500. [Google Scholar] [CrossRef]
- Caragiannis, I. Efficient Coordination Mechanisms for Unrelated Machine Scheduling. Algorithmica 2013, 66, 512–540. [Google Scholar] [CrossRef] [Green Version]
- Cole, R.; Correa, J.R.; Gkatzelis, V.; Mirrokni, V.S.; Olver, N. Decentralized utilitarian mechanisms for scheduling games. Games Econ. Behav. 2015, 92, 306–326. [Google Scholar] [CrossRef] [Green Version]
- Immorlica, N.; Li, L.E.; Mirrokni, V.S.; Schulz, A.S. Coordination mechanisms for selfish scheduling. Theor. Comput. Sci. 2009, 410, 1589–1598. [Google Scholar] [CrossRef] [Green Version]
- Anshelevich, E.; Dasgupta, A.; Tardos, É.; Wexler, T. Near-Optimal Network Design with Selfish Agents. Theory Comput. 2008, 4, 77–109. [Google Scholar] [CrossRef]
- Epstein, A.; Feldman, M.; Mansour, Y. Strong equilibrium in cost sharing connection games. Games Econ. Behav. 2009, 67, 51–68. [Google Scholar] [CrossRef]
- Anshelevich, E.; Caskurlu, B. Exact and approximate equilibria for optimal group network formation. Theor. Comput. Sci. 2011, 412, 5298–5314. [Google Scholar] [CrossRef] [Green Version]
- Anshelevich, E.; Caskurlu, B. Price of Stability in Survivable Network Design. Theory Comput. Syst. 2011, 49, 98–138. [Google Scholar] [CrossRef]
- Anshelevich, E.; Karagiozova, A. Terminal Backup, 3D Matching, and Covering Cubic Graphs. SIAM J. Comput. 2011, 40, 678–708. [Google Scholar] [CrossRef]
- Cardinal, J.; Hoefer, M. Non-cooperative facility location and covering games. Theor. Comput. Sci. 2010, 411, 1855–1876. [Google Scholar] [CrossRef]
- Hoefer, M. Non-Cooperative Tree Creation. Algorithmica 2009, 53, 104–131. [Google Scholar] [CrossRef]
- Hoefer, M. Strategic cooperation in cost sharing games. Int. J. Game Theory 2013, 42, 29–53. [Google Scholar] [CrossRef] [Green Version]
- Georgoulaki, E.; Kollias, K.; Tamir, T. Equilibrium Inefficiency in Resource Buying Games with Load-Dependent Costs. In Proceedings of the Algorithmic Game Theory—13th International Symposium, SAGT 2020, Augsburg, Germany, 16–18 September 2020; pp. 83–98. [Google Scholar]
- Aumann, R. Acceptable Points in General Cooperative n-Person Games. In Contributions to the Theory of Games; Princeton University Press: Princeton, NJ, USA, 1959; Volume 4. [Google Scholar]
- Andelman, N.; Feldman, M.; Mansour, Y. Strong price of anarchy. Games Econ. Behav. 2009, 65, 289–317. [Google Scholar] [CrossRef]
- Caragiannis, I.; Flammini, M.; Kaklamanis, C.; Kanellopoulos, P.; Moscardelli, L. Tight Bounds for Selfish and Greedy Load Balancing. Algorithmica 2011, 61, 606–637. [Google Scholar] [CrossRef]
- Suri, S.; Tóth, C.D.; Zhou, Y. Selfish Load Balancing and Atomic Congestion Games. In Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA’04, Barcelona, Spain, 27–30 June 2004; pp. 188–195. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgoulaki, E.; Kollias, K.; Tamir, T. Equilibrium Inefficiency and Computation in Cost-Sharing Games in Real-Time Scheduling Systems. Algorithms 2021, 14, 103. https://doi.org/10.3390/a14040103
Georgoulaki E, Kollias K, Tamir T. Equilibrium Inefficiency and Computation in Cost-Sharing Games in Real-Time Scheduling Systems. Algorithms. 2021; 14(4):103. https://doi.org/10.3390/a14040103
Chicago/Turabian StyleGeorgoulaki, Eirini, Kostas Kollias, and Tami Tamir. 2021. "Equilibrium Inefficiency and Computation in Cost-Sharing Games in Real-Time Scheduling Systems" Algorithms 14, no. 4: 103. https://doi.org/10.3390/a14040103
APA StyleGeorgoulaki, E., Kollias, K., & Tamir, T. (2021). Equilibrium Inefficiency and Computation in Cost-Sharing Games in Real-Time Scheduling Systems. Algorithms, 14(4), 103. https://doi.org/10.3390/a14040103