EEG Pattern Classification of Picking and Coordination Using Anonymous Random Walks
Abstract
:1. Introduction
2. Materials and Methods
3. Data Processing and Analysis
3.1. Preprocessing Pipeline and Graph Construction
3.2. Classification of Coherence Patterns Based on Bag of Node Degrees
3.3. Coherence Pattern Classification Based on Anonymous Walk Approach
3.4. Coherence Pattern Classification Based on Random Walk Approach
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Ethical Statement
Appendix A. Tacit Coordination Game List
Game Number | Option 1 | Option 2 | Option 3 | Option 4 |
---|---|---|---|---|
1 | Water | Beer | Wine | Whisky |
2 | Tennis | Volleyball | Football | Chess |
3 | Blue | Gray | Green | Red |
4 | Iron | Steel | Plastic | Bronze |
5 | Ford | Ferrari | Jaguar | Porsche |
6 | 1 | 8 | 5 | 16 |
7 | Haifa | Tel-Aviv | Jerusalem | Netanya |
8 | Spinach | Carrot | Lettuce | Pear |
9 | London | Paris | Rome | Madrid |
10 | Hazel | Cashew | Almond | Peanut |
11 | Strawberry | Melon | Banana | Mango |
12 | Noodles | Pizza | Hamburger | Sushi |
References
- Schelling, T.C. The Strategy of Conflict; Harvard University: Cambridge, MA, USA, 1960. [Google Scholar]
- Mailath, G.J. Do people play Nash equilibrium? Lessons from evolutionary game theory. J. Econ. Lit. 1998, 36, 1347–1374. [Google Scholar]
- Mehta, J.; Starmer, C.; Sugden, R. The Nature of Salience: An Experimental Investigation of Pure Coordination Games. Am. Econ. Rev. 1994, 84, 658–673. [Google Scholar]
- Mehta, J.; Starmer, C.; Sugden, R. Focal points in pure coordination games: An experimental investigation. Theory Decis. 1994, 36, 163–185. [Google Scholar] [CrossRef]
- Mizrahi, D.; Laufer, I.; Zuckerman, I. Individual strategic profiles in tacit coordination games. J. Exp. Theor. Artif. Intell. 2020, 33, 63–78. [Google Scholar] [CrossRef]
- Sitzia, S.; Zheng, J. Group Behaviour in Tacit Coordination Games with Focal Points—An Experimental Investigation. Games Econ. Behav. 2019, 117, 461–478. [Google Scholar] [CrossRef]
- Isoni, A.; Poulsen, A.; Sugden, R.; Tsutsui, K. Focal points and payoff information in tacit bargaining. Games Econ. Behav. 2019, 114, 193–214. [Google Scholar] [CrossRef]
- Zuckerman, I.; Kraus, S.; Rosenschein, J.S. Using focal point learning to improve human-machine tacit coordination. Auton. Agent. Multi. Agent. Syst. 2011, 22, 289–316. [Google Scholar] [CrossRef] [Green Version]
- Faillo, M.; Smerilli, A.; Sugden, R. The Roles of Level-k and Team Reasoning in Solving Coordination Games. 2013. Available online: https://www-ceel.economia.unitn.it/papers/papero13_06.pdf (accessed on 24 March 2022).
- Kraus, S.; Rosenschein, J.S.; Fenster, M. Exploiting focal points among alternative solutions: Two approaches. Ann. Math. Artif. Intell. 2000, 28, 187–258. [Google Scholar] [CrossRef]
- Mizrahi, D.; Laufer, I.; Zuckerman, I. Level-K Classification from EEG Signals Using Transfer Learning. Sensors 2021, 21, 7908. [Google Scholar] [CrossRef] [PubMed]
- Mizrahi, D.; Laufer, I.; Zuckerman, I. The Effect of Individual Coordination Ability on Cognitive-Load in Tacit Coordination Games. In Proceedings of the NeuroIS Retreat 2020; Davis, F., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A., Fischer, T., Eds.; Springer: Berlin/Heidelberg, Germany; Vienna, Austria, 2020. [Google Scholar]
- Mizrahi, D.; Laufer, I.; Zuckerman, I. Topographic Analysis of Cognitive Load in Tacit Coordination Games Based on Electrophysiological Measurements. In Proceedings of the NeuroIS Retreat, Virtual Conference, Vienna, Austria, 1–3 June 2021; 2021. [Google Scholar]
- Stokić, M.; Milovanović, D.; Ljubisavljević, M.R.; Nenadović, V.; Čukić, M. Memory load effect in auditory–verbal short-term memory task: EEG fractal and spectral analysis. Exp. Brain Res. 2015, 233, 3023–3038. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Liu, S.; Liu, X.; Zhang, C.; Li, A.; Jin, C.; Chen, Y.; Wang, H.; Zhang, X. Interactive brain activity: Review and progress on EEG-based hyperscanning in social interactions. Front. Psychol. 2018, 9, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-C.; Hsu, C.-Y.; Chiu, H.-W.; Hu, C.-J.; Lee, T.-C. Frequency power and coherence of electroencephalography are correlated with the severity of Alzheimer’s disease: A multicenter analysis in Taiwan. J. Formos. Med. Assoc. 2015, 114, 729–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seleznov, I.; Zyma, I.; Kiyono, K.; Tukaev, S.; Popov, A.; Chernykh, M.; Shpenkov, O. Detrended fluctuation, coherence, and spectral power analysis of activation rearrangement in EEG dynamics during cognitive workload. Front. Hum. Neurosci. 2019, 13, 270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peter-Derex, L.; Berthomier, C.; Taillard, J.; Berthomier, P.; Bouet, R.; Mattout, J.; Brandewinder, M.; Bastuji, H. Automatic analysis of single-channel sleep EEG in a large spectrum of sleep disorders. J. Clin. Sleep Med. 2021, 17, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, C.; Koenig, T.; Vesna, J.; Prichep, L.; John, R.E.; Wahlund, L.-O.; Dodge, Y.; Dierks, T. Application and comparison of classification algorithms for recognition of Alzheimer’s disease in electrical brain activity (EEG). J. Neurosci. Methods 2007, 161, 342–350. [Google Scholar] [CrossRef]
- Haufe, S.; Treder, M.S.; Gugler, M.F.; Sagebaum, M.; Curio, G.; Blankertz, B. EEG potentials predict upcoming emergency brakings during simulated driving. J. Neural Eng. 2011, 8, 056001. [Google Scholar] [CrossRef] [PubMed]
- Prakash, B.; Baboo, G.K.; Baths, V. A Novel Approach to Learning Models on EEG Data Using Graph Theory Features—A Comparative Study. Big Data Cogn. Comput. 2021, 5, 39. [Google Scholar] [CrossRef]
- Panzica, F.; Varotto, G.; Rotondi, F.; Spreafico, R.; Franceschetti, S. Identification of the epileptogenic zone from stereo-EEG signals: A connectivity-graph theory approach. Front. Neurol. 2013, 4, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasanzadeh, F.; Mohebbi, M.; Rostami, R. Graph theory analysis of directed functional brain networks in major depressive disorder based on EEG signal. J. Neural Eng. 2020, 17, 026010. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, S.; Burnaev, E. Anonymous Walk Embeddings. In Proceedings of the ICML, Stockholm, Sweden, 10–15 July 2018. [Google Scholar]
- Qiu, J.; Dong, Y.; Ma, H.; Li, J.; Wang, K.; Tang, J. Network embedding as matrix factorization: Unifying deepwalk, line, pte, and node2vec. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, Marina Del Rey, CA, USA, 5–9 February 2018. [Google Scholar]
- Goyal, P.; Ferrara, E. Graph embedding techniques, applications, and performance: A survey. Knowl.-Based Syst. 2018, 151, 78–94. [Google Scholar] [CrossRef] [Green Version]
- Lebichot, B.; Saerens, M. A bag-of-paths node criticality measure. Neurocomputing 2018, 275, 224–236. [Google Scholar] [CrossRef] [Green Version]
- Solmaz, B.; Dey, S.; Rao, A.R.; Shah, M. ADHD classification using bag of words approach on network features. In Proceedings of the Medical Imaging 2012: Image Processing, San Diego, CA, USA, 4 February 2012; International Society for Optics and Photonics: Bellingham, WA, USA, 2012. [Google Scholar]
- Micali, S.; Zhu, Z.A. Reconstructing markov processes from independent and anonymous experiments. Discret. Appl. Math. 2016, 200, 108–122. [Google Scholar] [CrossRef]
- Renard, Y.; Lotte, F.; Gibert, G.; Congedo, M.; Maby, E.; Delannoy, V.; Bertrand, O.; Le´cuyer, A. Openvibe: An open-source software platform to design, test, and use brain–computer interfaces in real and virtual environments. Presence Teleoperators Virtual Environ. 2010, 19, 35–53. [Google Scholar] [CrossRef] [Green Version]
- Murias, M.; Webb, S.J.; Greenson, J.; Dawson, G. Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biol. Psychiatry 2007, 62, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basharpoor, S.; Heidar, F.; Molavi, P. EEG coherence in theta, alpha, and beta bands in frontal regions and executive functions. Appl. Neuropsychol. Adult 2021, 28, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Rippon, G.; Brock, J.; Brown, C.; Boucher, J. Disordered connectivity in the autistic brain: Challenges for the ‘new psychophysiology’. Int. J. Psychophysiol. 2007, 63, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Laufer, I.; Mizrahi, D.; Zuckerman, I. An electrophysiological model for assessing cognitive load in tacit coordination games. Sensors 2022, 22, 477. [Google Scholar] [CrossRef] [PubMed]
- Duvenaud, D.; Maclaurin, D.; Aguilera-Iparraguirre, J.; Gómez-Bombarelli, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, R.P. Convolutional Networks on Graphs for Learning Molecular Fingerprints. arXiv 2015, arXiv:1509.09292. [Google Scholar]
- Wei, J.N.; Duvenaud, D.; Aspuru-Guzik, A. Neural networks for the prediction of organic chemistry reactions. ACS Cent. Sci. 2016, 2, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Grover, A.; Leskovec, J. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014. [Google Scholar]
- Li, Y.; Tarlow, D.; Brockschmidt, M.; Zemel, R. Gated Graph Sequence Neural Networks. In Proceedings of the International Conference on Learning Representations, San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Costa, E.P.; Lorena, A.C.; Carvalho, A.C.P.L.F.; Freitas, A.A. A review of performance evaluation measures for hierarchical classifiers. Available online: https://kar.kent.ac.uk/14562/1/Review.pdf (accessed on 24 March 2022).
- Wang, K.; Zhou, S.; Liew, S.C. Building hierarchical classifiers using class proximity. In Proceedings of the VLDB, San Francisco, CA, USA, 7–10 September 1999; 1999; pp. 7–10. [Google Scholar]
- Mazher, M.; Qayyum, A.; Ahmad, I.; Alassafi, M.O. Beyond traditional approaches: A partial directed coherence with graph theory-based mental load assessment using EEG modality. In Neural Computing and Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–16. [Google Scholar]
- Diykh, M.; Li, Y.; Wen, P. EEG sleep stages classification based on time domain features and structural graph similarity. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Zong, F.; Zhang, H.; Wei, B.; Liu, F. Cognitive Load During Multitasking Can Be Accurately Assessed Based on Single Channel Electroencephalography Using Graph Methods. IEEE Access 2021, 9, 33102–33109. [Google Scholar] [CrossRef]
- Mizrahi, D.; Laufer, I.; Zuckerman, I. Collectivism-individualism: Strategic behavior in tacit coordination games. PLoS ONE 2020, 15, e0226929. [Google Scholar] [CrossRef] [Green Version]
- Mizrahi, D.; Zuckerman, I.; Laufer, I. Using a Stochastic Agent Model to Optimize Performance in Divergent Interest Tacit Coordination Games. Sensors 2020, 20, 7026. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Song, S.; Wu, C. Impact of loss aversion on the newsvendor game with product substitution. Int. J. Prod. Econ. 2013, 141, 352–359. [Google Scholar] [CrossRef]
- Tversky, A.; Kahneman, D. Loss Aversion in Riskless Choice: A Reference-Dependent Model. Q. J. Econ. 1991, 106, 1039–1061. [Google Scholar] [CrossRef]
- Swart, E.K.; Nielen, T.M.J.; Shaul, S.; Sikkema-de Jong, M.T. Frontal theta/beta-ratio (TBR) as potential biomarker for attentional control during reading in healthy females. Cogn. Brain Behav. 2020, 24, 187–211. [Google Scholar] [CrossRef]
- Fernandez Rojas, R.; Debie, E.; Fidock, J.; Barlow, M.; Kasmarik, K.; Anavatti, S.; Garratt, M.; Abbass, H. Electroencephalographic Workload Indicators During Teleoperation of an Unmanned Aerial Vehicle Shepherding a Swarm of Unmanned Ground Vehicles in Contested Environments. Front. Neurosci. 2020, 14, 40. [Google Scholar] [CrossRef] [PubMed]
- Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef]
- Michel, C.M.; Murray, M.M.; Lantz, G.; Gonzalez, S.; Spinelli, L.; Peralta, R.G. de EEG source imaging. Neurophysiology 2004, 115, 2195–2222. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Marqui, R.D.; Michel, C.M.; Lehmann, D. Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain. Int. J. Psychophysiol. 1994, 18, 49–65. [Google Scholar] [CrossRef]
- Kraus, S. Predicting human decision-making: From prediction to action. In Proceedings of the 6th International Conference on Human-Agent Interaction, Southampton, UK, 15–18 December 2018. [Google Scholar]
- Zuckerman, I.; Kraus, S.; Rosenschein, J.S. The adversarial activity model for bounded rational agents. Auton. Agent. Multi. Agent. Syst. 2012, 24, 374–409. [Google Scholar] [CrossRef]
- Mizrahi, D.; Laufer, I.; Zuckerman, I. Predicting focal point solution in divergent interest tacit coordination games. J. Exp. Theor. Artif. Intell. 2021, 1–21. [Google Scholar] [CrossRef]
- Rosenfeld, A.; Zuckerman, I.; Azaria, A.; Kraus, S. Combining psychological models with machine learning to better predict people’s decisions. Synthese 2012, 189, 81–93. [Google Scholar] [CrossRef] [Green Version]
- Schydlo, P.; Rakovic, M.; Jamone, L.; Santos-Victor, J. Anticipation in human-robot cooperation: A recurrent neural network approach for multiple action sequences prediction. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 5909–5914. [Google Scholar]
Predicted Classes | True Positive Rate | False Negative Rate | ||||
---|---|---|---|---|---|---|
Resting State p = [1;0;0] | Picking p = [0;1;0] | Coordination p = [0;0;1] | ||||
True Classes | Resting State p = [1;0;0] | 592 | 8 | 0 | 98.66% | 1.34% |
Picking p = [0;1;0] | 4 | 70 | 46 | 58.33% | 41.67% | |
Coordination p = [0;0;1] | 2 | 41 | 77 | 64.16% | 35.84% | |
Positive Predicted Value | 98.99% | 58.82% | 62.60% | Total Prediction Accuracy (770/840) 91.66% | ||
False Discovery Rate | 1.01% | 41.18% | 37.40% |
Predicted Classes | True Positive Rate | False Negative Rate | |||
---|---|---|---|---|---|
Resting State | Picking and Coordination | ||||
True Classes | Resting State | 592 | 8 | 98.66% | 1.34% |
Picking and Coordination | 6 | 234 | 97.50% | 2.50% | |
Positive Predicted Value | 98.99% | 96.69% | Prediction Accuracy (826/840) 98.33% | ||
False Discovery Rate | 1.01% | 3.31% |
Predicted Classes | True Positive Rate | False Negative Rate | |||
---|---|---|---|---|---|
Picking P = 0 | Coordination P = 1 | ||||
True Classes | Picking P = 0 | 106 | 14 | 88.33% | 11.67% |
Coordination P = 1 | 9 | 111 | 92.50% | 7.50% | |
Positive Predicted Value | 92.17% | 88.80% | Prediction Accuracy 90.42% | ||
False Discovery Rate | 7.83% | 11.20% |
Predicted Classes | True Positive Rate | False Negative Rate | ||||
---|---|---|---|---|---|---|
Resting State P = [1;0;0] | Picking P = [0;1;0] | Coordination P = [0;0;1] | ||||
True Classes | Resting State P = [1;0;0] | 594 | 6 | 99.00% | 1.00% | |
Picking P = [0;1;0] | 3 | 106 | 11 | 88.33% | 11.67% | |
Coordination P = [0;0;1] | 1 | 8 | 111 | 92.50% | 7.50% | |
Positive Predicted Value | 99.33% | 90.60% | 88.8% | Total Prediction Accuracy (811/840) 96.55% | ||
False Discovery Rate | 0.67% | 9.40% | 11.2% |
Resting State | Picking | Coordination | |
---|---|---|---|
Positive Predicted Value (PPV) | 0.9933 | 0.9060 | 0.8880 |
True Positive Rate (TPR) | 0.9900 | 0.8833 | 0.9250 |
F1 Score | 0.9916 | 0.8945 | 0.9061 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuckerman, I.; Mizrahi, D.; Laufer, I. EEG Pattern Classification of Picking and Coordination Using Anonymous Random Walks. Algorithms 2022, 15, 114. https://doi.org/10.3390/a15040114
Zuckerman I, Mizrahi D, Laufer I. EEG Pattern Classification of Picking and Coordination Using Anonymous Random Walks. Algorithms. 2022; 15(4):114. https://doi.org/10.3390/a15040114
Chicago/Turabian StyleZuckerman, Inon, Dor Mizrahi, and Ilan Laufer. 2022. "EEG Pattern Classification of Picking and Coordination Using Anonymous Random Walks" Algorithms 15, no. 4: 114. https://doi.org/10.3390/a15040114
APA StyleZuckerman, I., Mizrahi, D., & Laufer, I. (2022). EEG Pattern Classification of Picking and Coordination Using Anonymous Random Walks. Algorithms, 15(4), 114. https://doi.org/10.3390/a15040114