Integrated Decision Support Framework of Optimal Scaffolding System for Construction Projects
Abstract
:1. Introduction
2. Framework of an Integrated Decision Support System for Scaffolding in Construction Projects
2.1. Data Processing
2.2. Simulation Modules
2.2.1. Technical Evaluation Module
2.2.2. Phase 2: Alternative Ranking Module
The Influential Factors for Scaffolding Decision Making in Phase 2
Analysis Method of Fuzzy Analytical Hierarchy Processing
Steps to Proceed for FAHP-Based Module
Alternative Ranking
3. Implementation of the Proposed Framework
3.1. Step 1: Data Processing
3.2. Step 2: Implementation of Phase 1
3.3. Step 3: Implementation of Phase 2
4. Discussion
4.1. Sensitivity Analysis of Weight Changes
4.2. Comparisons of Different MCDM Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gurmu, A.T. Preconstruction Phase Management Practices Enhancing Labor Productivity in Multistory Building Projects. J. Constr. Eng. Manag. 2023, 149, 04023032. [Google Scholar] [CrossRef]
- Raoufi, M.; Fayek, A.R. Key Moderators of the Relationship between Construction Crew Motivation and Performance. J. Constr. Eng. Manag. 2018, 144, 04018047. [Google Scholar] [CrossRef]
- Yin, Z.; Caldas, C. Scaffolding in industrial construction projects: Current practices, issues, and potential solutions. Int. J. Constr. Manag. 2022, 22, 2554–2563. [Google Scholar] [CrossRef]
- Cho, C.; Kim, K.; Park, J.; Cho, Y.K. Data-driven monitoring system for preventing the collapse of scaffolding structures. J. Constr. Eng. Manag. 2018, 144, 04018077. [Google Scholar] [CrossRef]
- Jin, H.; Nahangi, M.; Goodrum, P.M.; Yuan, Y. Multiobjective Optimization for Scaffolding Space Planning in Industrial Piping Construction Using Model-Based Simulation Programming. J. Comput. Civil. Eng. 2020, 34, 06019001. [Google Scholar] [CrossRef]
- Dogan, E.; Yurdusev, M.A.; Yildizel, S.A.; Calis, G. Investigation of scaffolding accident in a construction site: A case study analysis. Eng. Fail. Anal. 2021, 120, 105108. [Google Scholar] [CrossRef]
- Zeitzmann, J. Internal Analysis on Scaffolding; Kaefer Isoliertechnik: Bremen, Germany, 2006. [Google Scholar]
- Szóstak, M.; Hoła, B.; Bogusławski, P. Identification of accident scenarios involving scaffolding. Autom. Constr. 2021, 126, 103690. [Google Scholar] [CrossRef]
- Akinci, B.; Fischer, M.; Kunz, J.; Levitt, R. Representing work spaces generically in construction method models. J. Constr. Eng. Manag. 2002, 128, 296–305. [Google Scholar] [CrossRef] [Green Version]
- Fang, D.; Shen, Q.; Wu, S.; Liu, G. A comprehensive framework for assessing and selecting appropriate scaffolding based on analytic hierarchy process. J. Saf. Res. 2003, 34, 589–596. [Google Scholar] [CrossRef]
- Kim, H.; Ahn, H. Temporary facility planning of a construction project using BIM (Building Information Modeling). Comput. Civ. Eng. 2011, 627–634. [Google Scholar]
- Kim, J.; Fischer, M. Formalization of the features of activities and classification of temporary structures to support an automated temporary structure planning. Comput. Civ. Eng. 2007, 338–346. [Google Scholar]
- Kim, J.; Fischer, M.; Kunz, J.; Levitt, R. Semiautomated scaffolding planning: Development of the feature lexicon for computer application. J. Comput. Civil. Eng. 2015, 29, 04014079. [Google Scholar]
- Jackman, J.; Ogilvie, C.; Ryan, S.; Niederhauser, D. Scaffolding to Improve Reasoning Skills in Problem Formulation. In Proceedings of the 2008 Annual Conference & Exposition, Pittsburgh, PA, USA, 22–25 June 2008. [Google Scholar]
- Bannier, P.; Jin, H.; Goodrum, P.M. Modeling of work envelope requirements in the piping and steel trades and the influence of global anthropomorphic characteristics. J. Inf. Technol. Constr. 2016, 21, 292–314. [Google Scholar]
- Kim, K.; Cho, Y.K.; Kim, K. BIM-based decision-making framework for scaffolding planning. J. Manag. Eng. 2018, 34, 04018046. [Google Scholar] [CrossRef]
- Hosseini, S.A.; de la Fuente, A.; Pons, O. Multicriteria decision-making method for sustainable site location of post-disaster temporary housing in urban areas. J. Constr. Eng. Manag. 2016, 142, 04016036. [Google Scholar] [CrossRef] [Green Version]
- Jato-Espino, D.; Castillo-Lopez, E.; Rodriguez-Hernandez, J.; Canteras-Jordana, J.C. A review of application of multi-criteria decision making methods in construction. Autom. Constr. 2014, 45, 151–162. [Google Scholar] [CrossRef]
- Karakhan, A.A.; Rajendran, S.; Gambatese, J.; Nnaji, C. Measuring and evaluating safety maturity of construction contractors: Multicriteria decision-making approach. J. Constr. Eng. Manag. 2018, 144, 04018054. [Google Scholar] [CrossRef]
- Medineckiene, M.; Zavadskas, E.; Björk, F.; Turskis, Z. Multi-criteria decision-making system for sustainable building assessment/certification. Arch. Civ. Mech. Eng. 2015, 15, 11–18. [Google Scholar] [CrossRef]
- Tan, T.; Mills, G.; Papadonikolaki, E.; Liu, Z. Combining multi-criteria decision making (MCDM) methods with building information modelling (BIM): A review. Autom. Constr. 2021, 121, 103451. [Google Scholar]
- Zavadskas, E.K.; Antuchevičienė, J.; Kapliński, O. Multi-criteria decision making in civil engineering: Part I–a state-of-the-art survey. Eng. Struct. Technol. 2015, 7, 103–113. [Google Scholar] [CrossRef]
- Fayek, A.R. Fuzzy Logic and Fuzzy Hybrid Techniques for Construction Engineering and Management. J. Constr. Eng. Manag. 2020, 146, 04020064. [Google Scholar] [CrossRef]
- Alshibani, A.; Elassir, H.; Al-Najjar, M.; Hamida, H. AHP Based Approach for Crane Selection of Building Construction in Saudi Arabia: A Case Study. In Proceedings of the Annual Conference-Canadian Society for Civil Engineering, Montreal, QC, Canada, 12–15 June 2019. [Google Scholar]
- Mahamadu, A.-M.; Mahdjoubi, L.; Booth, C. Supplier BIM competence assessments within the cloud: A proposed Fuzzy-TOPSIS approach. BIM 2015, 149, 71–82. [Google Scholar]
- Alireza, A.F.F.; Rashidi, T.H.; Akbarnezhad, A.; Waller, S.T. BIM-enabled sustainability assessment of material supply decisions. Eng. Constr. Archit. Manag. 2017, 24, 668–695. [Google Scholar]
- Wang, T.-K.; Zhang, Q.; Chong, H.-Y.; Wang, X. Integrated supplier selection framework in a resilient construction supply chain: An approach via analytic hierarchy process (AHP) and grey relational analysis (GRA). Sustainability 2017, 9, 289. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Liu, Z.; Mbachu, J. Optimization of the supplier selection process in prefabrication using BIM. Buildings 2019, 9, 222. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, T.; Thaheem, M.J. Economic sustainability assessment of residential buildings: A dedicated assessment framework and implications for BIM. Sustain. Cities Soc. 2018, 38, 476–491. [Google Scholar] [CrossRef]
- Mathiyazhagan, K.; Gnanavelbabu, A.; Prabhuraj, B.L. A sustainable assessment model for material selection in construction industries perspective using hybrid MCDM approaches. J. Adv. Manag. Res. 2018, 16, 234–259. [Google Scholar] [CrossRef]
- Ahmed, M.; Mallick, J.; AlQadhi, S.; Ben Kahla, N. Development of concrete mixture design process using MCDM approach for sustainable concrete quality management. Sustainability 2020, 12, 8110. [Google Scholar] [CrossRef]
- Amorocho, J.A.P.; Hartmann, T. A multi-criteria decision-making framework for residential building renovation using pairwise comparison and TOPSIS methods. J. Build. Eng. 2022, 53, 104596. [Google Scholar] [CrossRef]
- Mitropoulos, P.; Houssain, S.; Guarascio-Howard, L. Improving Productivity and Ergonomics in HVAC Installation. In Proceedings of the 49th ASC Annual International Conference Proceedings, San Luis Obispo, CA, USA, 10–13 April 2013. [Google Scholar]
- Kumar, C. Estimation and Planning Methodology for Industrial Construction Scaffolding. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2013. [Google Scholar]
- Guo, S.J. Identification and resolution of work space conflicts in building construction. J. Constr. Eng. Manage. 2002, 128, 287–295. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Karayalcin, I.I. The analytic hierarchy process: Planning, priority setting, resource allocation. Eur. J. Oper. Res. 1982, 97–98. [Google Scholar] [CrossRef]
- Zadeh, L.A. Information and control. Fuzzy Sets 1965, 8, 338–353. [Google Scholar]
- Zadeh, L.A. Fuzzy logic. Computer 1988, 21, 83–93. [Google Scholar] [CrossRef]
- Rao, R.V.; Davim, J.P. A decision-making framework model for material selection using a combined multiple attribute decision-making method. Int. J. Adv. Manuf. Technol. 2008, 35, 751–760. [Google Scholar] [CrossRef]
- Mardani, A.; Jusoh, A.; Zavadskas, E.K. Fuzzy multiple criteria decision-making techniques and applications—Two decades review from 1994 to 2014. Expert Syst. Appl. 2015, 42, 4126–4148. [Google Scholar] [CrossRef]
- Sen, C.G.; Çınar, G. Evaluation and pre-allocation of operators with multiple skills: A combined fuzzy AHP and max–min approach. Expert Syst. Appl. 2010, 37, 2043–2053. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Methods for Multiple Attribute Decision Making. In Multiple Attribute Decision Making; Springer: Berlin/Heidelberg, Germany, 1981; pp. 58–191. [Google Scholar]
- Yoon, K. System Selection by Multiple Attribute Decision Making. Ph.D. Thesis, Kansas State University, Manhatan, KS, USA, 1980. [Google Scholar]
Linguistic Description | Fuzzy Number | |
---|---|---|
Equally important | (1, 1, 1) | |
Intermediate values between and | (1, 2, 3) | |
Moderate important | (2, 3, 4) | |
Intermediate values between and | (3, 4, 5) | |
Essential important | (4, 5, 6) | |
Intermediate values between and | (5, 6, 7) | |
Very vital important | (6, 7, 8) | |
Intermediate values between and | (7, 8, 9) | |
Extreme vital important | (8, 9, 10) |
Workface ID | x | y | z | Workface Orientation |
---|---|---|---|---|
001 | 200.3 | 10000.0 | 5959.7 | upward |
002 | 200.3 | 10069.9 | 6362.6 | upward |
003 | 200.3 | 10059.5 | 6902.6 | upward |
004 | 715.6 | 5105.0 | 6622.0 | upward |
⁝ | ⁝ | ⁝ | ||
039 | 11917.6 | 4981.6 | 7127.6 | upward |
040 | 11923.8 | 5005.7 | 7019.6 | upward |
041 | 1197.6 | 5018.4 | 6817.7 | upward |
042 | 11799.7 | 5105.0 | 5979.2 | upward |
ID | Manufacturer | Manufacturer Country | Model | Type | MWH (m) | Platform Length (m) | Platform Width (m) | Raise/Lower Speed (s) | Drive Speed-Stowed (km/h) | Lift Capacity (kg) | Horizontal Reach (m) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Genie | USA | GSTM-1930 | Scissor lift | 7.79 | 1.63 | 0.74 | 16/25 | 4.0 | 227 | - |
2 | Genie | USA | GSTM-2032 | Scissor lift | 8.10 | 2.26 | 0.81 | 30/34 | 3.5 | 363 | - |
3 | Mantall | China | XE65N | Scissor lift | 6.50 | 1.64 | 0.75 | 16/22 | 3.8 | 270 | - |
⁝ | ⁝ | ⁝ | |||||||||
10 | Haulotte | France | Quick-up 7 | Vertical lift | 6.70 | 0.68 | 0.66 | - | - | 200 | - |
11 | Haulotte | France | Quick-up 8 | Vertical lift | 8.10 | 0.68 | 0.66 | - | - | 159 | - |
12 | Haulotte | France | Quick-up 8 | Vertical lift | 9.50 | 0.68 | 0.66 | - | - | 159 | - |
⁝ | ⁝ | ⁝ | |||||||||
22 | JLG | USA | 600S | Telescopic lift | 18.36 | 2.44 | 0.91 | - | 6.8 | 227 | 15.09 |
23 | JLG | USA | 600J | Telescopic lift | 20.36 | 2.44 | 0.91 | - | 6.8 | 227 | 17.30 |
24 | SINOBOOM | China | GTZZ15J | Telescopic lift | 14.80 | 1.83 | 0.76 | - | 7.0 | 250 | 7.62 |
Criteria | C1 | C2 | C3 | C4 |
---|---|---|---|---|
C1 | (1, 1, 1) | (1, 2, 3) | (1/3, 1/2, 1) | (2, 3, 4) |
C2 | (1/3, 1/2, 1) | (1, 1, 1) | (1/3, 1/2, 1) | (1, 2, 3) |
C3 | (1, 2, 3) | (1, 2, 3) | (1, 1, 1) | (3, 4, 5) |
C4 | (1/4, 1/3, 1/2) | (1/3, 1/2, 1) | (1/5, 1/4, 1/3) | (1, 1, 1) |
Main Criteria | Local Weight | Sub-Criteria | Local Weight | Global Weight | Ranking |
---|---|---|---|---|---|
C1 | 0.2885 | C11 | 0.2415 | 0.070 | 5 |
C12 | 0.6131 | 0.177 | 1 | ||
C13 | 0.1454 | 0.022 | 9 | ||
C2 | 0.1958 | C21 | 0.2140 | 0.042 | 10 |
C22 | 0.1870 | 0.037 | 11 | ||
C23 | 0.1143 | 0.022 | 12 | ||
C24 | 0.2367 | 0.046 | 8 | ||
C25 | 0.2480 | 0.049 | 6 | ||
C3 | 0.4145 | C31 | 0.4211 | 0.175 | 2 |
C32 | 0.3707 | 0.154 | 3 | ||
C33 | 0.2082 | 0.086 | 4 | ||
C4 | 0.1012 | C41 | 0.4618 | 0.047 | 7 |
C42 | 0.2121 | 0.021 | 13 | ||
C43 | 0.1282 | 0.013 | 15 | ||
C44 | 0.1979 | 0.020 | 14 |
Alternatives | Selection Criteria | Separation Distances | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C11 | C12 | C13 | C21 | C22 | C23 | C24 | C25 | C31 | C32 | C33 | C41 | C42 | C43 | C44 | di+ | di− | |
A1 | 0.483 | 0.523 | 0.480 | 0.402 | 0.410 | 0.580 | 0.535 | 0.549 | 0.496 | 0.518 | 0.478 | 0.499 | 0.468 | 0.461 | 0.540 | 0.017 | 0.026 |
A2 | 0.515 | 0.567 | 0.398 | 0.570 | 0.526 | 0.410 | 0.484 | 0.492 | 0.502 | 0.489 | 0.527 | 0.544 | 0.493 | 0.502 | 0.501 | 0.014 | 0.033 |
A3 | 0.547 | 0.492 | 0.590 | 0.494 | 0.582 | 0.479 | 0.440 | 0.481 | 0.461 | 0.535 | 0.478 | 0.537 | 0.525 | 0.496 | 0.475 | 0.021 | 0.025 |
A4 | 0.450 | 0.403 | 0.514 | 0.519 | 0.465 | 0.517 | 0.535 | 0.475 | 0.537 | 0.454 | 0.515 | 0.409 | 0.512 | 0.538 | 0.482 | 0.034 | 0.016 |
Alternatives | CCi | Ranking |
---|---|---|
A1 | 0.609418 | 2 |
A2 | 0.702759 | 1 |
A3 | 0.545311 | 3 |
A4 | 0.326086 | 4 |
FAHP-TOPSIS | FAHP-MAVT | FAHP-VIKOR | |
---|---|---|---|
FAHP-TOPSIS | 1.0 | 0.900 | 1.0 |
FAHP-MAVT | 0.900 | 1.0 | 0.900 |
FAHP-VIKOR | 1.0 | 0.900 | 1.0 |
MCDM method | Change criterion weight | |||||||||||
−5% | +5% | −50% | +50% | |||||||||
Sensitivity coefficient SC* | ||||||||||||
0 | 2 | >2 | 0 | 2 | >2 | 0 | 2 | >2 | 0 | 2 | >2 | |
Occurrence of sensitivity coefficient among 15 sub-criteria | ||||||||||||
FAHP-TOPSIS | 15 | 0 | 0 | 15 | 0 | 0 | 13 | 0 | 2 | 10 | 3 | 2 |
FAHP-MAVT | 15 | 0 | 0 | 15 | 0 | 0 | 13 | 2 | 0 | 15 | 0 | 0 |
FAHP-VIKOR | 15 | 0 | 0 | 15 | 0 | 0 | 14 | 1 | 0 | 13 | 2 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, H.; Goodrum, P.M. Integrated Decision Support Framework of Optimal Scaffolding System for Construction Projects. Algorithms 2023, 16, 348. https://doi.org/10.3390/a16070348
Jin H, Goodrum PM. Integrated Decision Support Framework of Optimal Scaffolding System for Construction Projects. Algorithms. 2023; 16(7):348. https://doi.org/10.3390/a16070348
Chicago/Turabian StyleJin, Haifeng, and Paul M. Goodrum. 2023. "Integrated Decision Support Framework of Optimal Scaffolding System for Construction Projects" Algorithms 16, no. 7: 348. https://doi.org/10.3390/a16070348
APA StyleJin, H., & Goodrum, P. M. (2023). Integrated Decision Support Framework of Optimal Scaffolding System for Construction Projects. Algorithms, 16(7), 348. https://doi.org/10.3390/a16070348